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Abstract

The growing capabilities of Al in generating video content have brought forward
significant challenges in effectively evaluating these videos. Unlike static images
or text, video content involves complex spatial and temporal dynamics which may
require a more comprehensive and systematic evaluation of its contents in aspects
like video presentation quality, semantic information delivery, alignment with
human intentions, and the virtual-reality consistency with our physical world. This
survey identifies the emerging field of AI-Generated Video Evaluation (AIGVE),
highlighting the importance of assessing how well Al-generated videos align with
human perception and meet specific instructions. We provide a structured analysis
of existing methodologies that could be potentially used to evaluate Al-generated
videos. By outlining the strengths and gaps in current approaches, we advocate
for the development of more robust and nuanced evaluation frameworks that can
handle the complexities of video content, which include not only the conventional
metric-based evaluations, but also the current human-involved evaluations, and the
future model-centered evaluations. This survey aims to establish a foundational
knowledge base for both researchers from academia and practitioners from the
industry, facilitating the future advancement of evaluation methods for Al-generated
video content.

1 Introduction

With the introduction and widespread integration of large generative models like ChatGPT [172],
Sora [173], LLaMA [231]], and the recent Meta Movie Gen [156], Al-generated content has become
increasingly significant in both the production and consumption of contents. In the domain of
production, text and video professionals increasingly use generative tools to create and enhance
content, from scripts and articles to complex visual sequences, which would traditionally require
extensive time and effort to achieve manually, thus streamlining creative workflows and enhancing
productivity [[103} 1303, [7]. On the consumer front, reliance on outputs from generative models has
also become commonplace, with applications ranging from information retrieval to the automation of
routine tasks. This shift represents a significant transformation from the pre-2023 era, when such
tasks were predominantly manual.

As this trend continues to evolve, the methods that can automatically evaluate these Al-generated
contents become crucial. These methods help ensure that such content aligns well with human per-
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Figure 1: Evolution of Video Generation Models Over Time.

ceptions and instructions. While the evaluation of Al-generated text and images has been thoroughly
studied, using techniques including word and pixel matching [128] [73] [178]), sophisticated mod-
eling [[72} 292} 63]], and Large/Vision Language Model evaluation [56] [294]], the assessment
of Al-generated videos presents unique challenges that are yet to be comprehensively addressed.
This discrepancy highlights a significant gap in research, particularly at a time when advanced video
generation models are rapidly evolving, as illustrated in Figure [T} and video content is gaining
increasing prominence in both professional and personal domains.

Video, by its nature, incorporates both spatial complexity and temporal dynamics, making its eval-
uation intrinsically more complex than static images or text. Traditional Video Quality Assess-
ment (VQA) metrics focus on technical aspects such as compression effects, transmission quality,
(137, [T54]]. Recent research has shifted focus towards evaluating the perceptual quality
of user-generated, in-the-wild videos, considering factors like blur, motion stability, and noise levels
(266, [104]]. These methods assess whether a video effectively conveys visual information to the
viewer. However, in the era of Al-Generated Content (AIGC), an additional critical aspect is whether
the generated content aligns with the creator’s instruction, which remains less explored within current
VQA frameworks.

Besides, current research in the evaluation of Al-generated videos is rapidly emerging but remains
unstructured. The continuous introduction of new models and evaluation metrics complicates the
process of identifying comprehensive resources, as they are often scattered across various domains.
Moreover, those methods focus on various evaluation aspects, which can overlap or be entirely



disjoint. As a result, the absence of a unified framework impedes the progress of the field, resulting
in fragmented research efforts. Therefore, there is a critical need for a more cohesive approach in this
fast-moving area.

In this survey, we aim to highlight a new area focused on Al-Generated Video Evaluation (AIGVE).
To devote our effort, we have collected and integrated existing research related to this field to help
academic researchers and industrial practitioners locate the essential foundational knowledge. Our
focus is on existing works from related research areas, and we have conducted extensive research
on fields such as VQA [[159]], multimodal text-visual alignment [278]], and recent emerging AIGVE
evaluation methods [[139,182,[157]]. By exploring and categorizing methods related to AIGVE, we
aim to build a solid foundation for Al-generated video evaluation and support future research efforts
in this rapidly evolving area.

Our contributions through this survey are summarized as:

» Highlighting an Emerging Field: We propose and emphasize the need for a new research
area on Al-Generated Video Evaluation (AIGVE).

* Comprehensive Review of Existing Evaluation Methods: This survey provides a system-
atic and comprehensive review of current methodologies relevant to AIGVE from multiple
research fields. We categorize and analyze these approaches to provide a well-structured
outline of the existing landscape.

* Guidance for Future Research Directions: We also locate several potential areas that call
for more future investigations and development in AIGVE. These areas include integrating
evaluation frameworks with vision language models, enhancing the interpretability of evalu-
ation scores, and addressing the ethical and safety considerations of these frameworks. This
survey aims to serve as a foundational resource for researchers and industrial practitioners,
providing insights that can guide the advancement of more effective and comprehensive
evaluation methodologies for Al-generated video content.

2 Advancements in Video Generation

Generating videos that are consistent with the offline reality world and conform to the currently known
world physical laws has long been a popular and necessary research topic. Most of the previous studies
perform video generation tasks based on three different types of generative models: 1) Generative
Adversarial Networks (GAN) [246, 237,16, [18}, 191}, 2831 155} 230], 2) Autoregressive Transformers
(262159176} 102}, 2451 [275] [222]), and 3) Diffusion Models [[75| 212 [74] 20, 287 [19] [129].

GAN-based Models: In the early exploration of video generation, GAN-based models used to be
the mainstream approach, which also can be seen as the temporal extension of image GAN-based
generation [1531192] 273288, [183, 92| [89]]. Specifically, the GAN-based generative model consists
of a generator network (i.e., aims to generate videos) and a discriminator network (i.e., tries to
distinguish which ones are generated “fake” videos). In this training phase of the model, this iteration
keeps going until a balance is reached where the generator can generate high-quality videos that
confuse the discriminator, while the discriminator can maximize the recognition of "fake" generated
videos. Vondrick et al. [246] first leverages GAN for video generation, differentiating the video
into moving foreground spatiotemporal convolutions and static background spatial convolutions.
Tulyakov et al. [237] further adopts a motion and content decomposed representation for video
generation within a recurrent mechanism to generate motion embeddings and a CNN framework
to generate videos. Instead of using 2D convolutions or recurrent networks to represent the time
dimension, several following works [6, [18] also seek to use 3D convolution networks to harmonize
video generation temporally. In addition to modeling the temporal representation, Karras et al. [91]
tries to progressively generate high-resolution videos in spatial and temporal directions starting with
low-resolution images.

Autoregressive Transformer-based Models: Meanwhile, the generalizability of the transformer
model [242] and its effectiveness on a wide range of tasks [[130} 65]] make it an alternative pathway
to consider for video generation. Similar to the techniques used with transformers in text, video
generation also converts the input modalities, such as text and images, into token sequences using an
encoder. Then, the autoregressive transformer is trained to decode each frame of the generated videos.
Wu et al. [262] first uses VQ-VAE [241]] and a three-dimensional sparse attention mechanism for



open-domain text-to-video generation. Ge et al. [S9] proposes to combine a time-agnostic VQGAN
for generating images with a time-sensitive transformer to generate long videos. Inheriting the
remarkable pretrained models in text-to-image generation, Hong et al. [[76] proposes a multi-frame-
rate hierarchical training strategy based on [48]] to better align text and video clips.

With the emergence and rapid growth of Large Language Models (LLMs), a few works [102] 245
2751 1222] seek to leverage the power of LLMs for video generation. One of the most representative
works, Kondratyuk et al. [102], encodes all modalities (i.e., text, image, depth+optical flow, masked
video) into the discrete token space and directly uses LLM architectures for video generation.

Diffusion Models: In recent years, the significant breakthrough in text-to-image generation [203,
53,146,169, 199, 57]] has made diffusion models the dominant approach in recent video generation
studies. Inspired by the successful utilization of diffusion models in image generation, many studies
try to use them in video generation. The diffusion models [216] rely on iterative denoising samples
drawn from a noise distribution to generate final results. For text-to-video generation, the noisy input
video and the corresponding text embeddings are used to feed into the denoising network. Ho et al.
[75] first extends the standard image diffusion architecture to video data, modeling entire videos
using a 3D U-Net diffusion model architecture. Singer et al. [212]] extend the text-to-image diffusion
models with pseudo-3D convolutional and attention layers, each spatial 2D-Conv layer is followed by
a temporal 1D-Conv layer, reducing the computational resource compared to computing 3D-Conv
layers. Based on the prior video diffusion models, Ho et al. [74] explores generating higher definition
videos with spatial super-resolution (SSR) and temporal super-resolution (TSR) models; Blattmann
et al. [20]] extends the text-to-image Latent Diffusion Models (LDM) Stable Diffusion model to
generate long-term videos with high resolution.

Zhang et al. [287]] further combines the pixel-based and latent-based text-to-video diffusion models
(VDMs) for the generation: it first uses pixel-based VDMs to produce a low-resolution video, then
translates it via latent-based VDMs to further upsample the low-resolution video to high resolution.
Blattmann et al. [19] demonstrates the necessity of the well-curated pretraining dataset for generating
high-quality videos, presenting a systematic data preprocessing workflow including captioning and
filtering strategies for data preparation. The recent work Lin et al. [129] further adapts pretrained
ControlNets [290] to video generation, which supports video control, sparse-frame video control, and
a variety of downstream tasks such as video editing and text-guided motion control.

The aforementioned advancements in foundational techniques have substantially enhanced the
performance of recent video generation models. These models have experienced rapid growth in both
open-source and commercial arenas, achieving increasingly higher fidelity and extended duration in
generated content, as shown in the upper section of Figure[2]

Nevertheless, substantial challenges remain concerning the quality of generated videos. As presented
in the lower section of Figure 2] generated videos often exhibit two major issues: (1) misalignment
with human perceptual expectations and (2) deviation from the creator’s instructions, resulting in
misleading outputs. These issues can be subtle and difficult to detect upon initial review. Addressing
these shortcomings necessitates the development of robust evaluation methodologies. However, aside
from human evaluation, there remains a significant gap in systematic and comprehensive automated
evaluation frameworks to consistently assess the quality of Al-generated videos.

3 Al-Generated Video Evaluation

The field of evaluating Al-generated videos is in its early stages. As synthesized video content
becomes increasingly prevalent, there is a demand for effective evaluation methods that align with
the intentions of creators and the perceptions of viewers. This survey seeks to outline a prelimi-
nary framework for AI-Generated Video Evaluation (AIGVE), recognizing that our definitions and
understandings will evolve as the field matures.

By extensively reviewing and categorizing existing research [[159, 266/ 141} [139], we propose that
Al-generated videos should ideally satisfy two principal criteria: 1) alignment with human perception
and 2) alignment with human instructions.

Alignment with Human Perception. This aspect emphasizes evaluating video quality by assessing
traditional metrics such as high resolution, clarity, and the absence of noise [[159]. Besides, Al-
generated content introduces additional complexity, as videos must also maintain consistency with the
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[Stable Video Diffusion] Text-to-Video Generation: "A tiny finch on a branch with spring flowers on background"

[Stable Video Diffusion] Text-to—Vidéo Generation: "On the wooden table, there is a glass vase with several
yellow tulips, and next to the vase, a red alarm clock is ringing.

Figure 2: Case Study of Al-Generated Videos. Although current studies can generate high-quality
videos (i.e., the green cases), the generated videos still have flaws in certain conditions including
physical perception error (i.e., the red cases) and incoherence with the instructions (i.e., the blue
cases). Specifically, the areas in red bound boxes indicate the anomaly physical perception contents
in the videos, and the blue highlighted fonts indicate the incoherence between human text instructions
and the contents in generated videos.

physical world [203,226]]. This involves realistic texture rendering, accurate color representation, and
adherence to physical laws, ensuring that the videos are not only of high quality but also believable
and immersive.

Alignment with Human Instructions. With the introduction of advanced generative Al technologies,
a new challenge has emerged in ensuring that videos align precisely with detailed human instructions,
which are currently primarily text-based. This involves generating content that accurately mirrors
described scenarios, actions, and narratives, thus fulfilling the creative and communicative objectives
conveyed by creators. This alignment ensures that the video content not only meets technical standards
but also fulfills the creative and communicative intentions of the creator, making it a true reflection of
human instruction.
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Figure 3: The development and overview of Al-Generated Video Evaluation (AIGVE). AIGVE was
built on two initially separate aspects: 1) , and 2) Alignment
with human instructions. Note that the timeline scales are different for two aspects. Release date
represents the date that this survey is released.

Figure [3]illustrates the development and overview of both aspects and highlights the emergence of
AIGVE. Initially, the evaluation of video alignment with human perception and instructions were
separate research areas. With the rise of Al-generated videos, both areas need to be considered when
evaluating Al-generated videos.

In the remainder of this section, we present the development of AIGVE. It begins by detailing the
creation of the benchmark dataset, transforming video-opinion pairs into video-instruction-opinion
triplets for more nuanced evaluation. The evaluation methods are then categorized into two main
approaches: metric collection evaluation, which utilizes existing metrics to assess various aspects of
video quality, and modeling evaluation, where new models are developed and trained on the collected
datasets to simulate human judgment.

3.1 Benchmark Datasets for AI-Generated Video Evaluation

The construction of benchmark datasets is a crucial preliminary step for both training evaluation
models and assessing current video generation models. Recent studies have devoted significant effort
to creating large-scale and robust benchmarks.

To align better with human perception and instructions, current research extends the dataset format
for video quality assessment from video-opinion pairs D = {V, S} to video-instruction-opinion
triplets D = {V, I, S}, where V represents the video, I refers to the instruction, and S denotes the
opinion score. We summarize the current standard data collection steps for AIGVE in Figure[d]

In the instruction collection step, the objective is to gather a set of high-quality video generation
instructions, denoted as I, corresponding to various aspects such as dynamics or composition. Note
that the instructions could be filtered from the pre-existing text-to-video dataset such as MSR-VTT
[272]], WebVid [[12], or generated by large language models under desired criteria.
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Figure 4: AIGVE Benchmark Dataset Collection Process.

Table 1: Summary of recent Al-Generated Video Evaluation Benchmark datasets: *# Video’ is
the number of unique videos, '# Frames’ the frames per video, "# Prompt’ the unique prompts, "#
Category’ the number of video categories, "# Generators’ the number of video generation models, *#
Evaluators’ the number of human evaluators, and *Aspect’ the evaluation focus.

Dataset Year #Video #Frames Resolution #Prompt # Category # Generators # Evaluators Aspect Link
EvalCrafter [139] 2023 2,500 8 >512p 500 4 5 3 general Q
VBench [82 2023 TBD >6 > 240p 1746 24 8 general Q
Chivileva et al. [37] 2023 1,005 >8 > 128p 201 2 5 24 naturalness o
T2VQA-DB [106 2024 10,000 16 512p 1,000 7 9 27 general o
T2VBench [86, 2024 5,000 > 16 > 256p 1,600 16 3 3/data temporal O
VIDEOPHY [15 2024 9,300 >25 > 240p 688 3 9 physical O
TC-Bench [54. 2024 817 16 > 256p 150 3 5 8 composition o
T2VSafetyBench [157 2024 17,600 >25 > 240p 4,400 12 4 60 safety o
VIDEOFEEDBACK [67 2024 37,600 >8 > 256p 44,500 5 11 20 general Q
AIGC-VQA [145] 2024 10,000 16 512p 1,000 3 10 20 general O
DEVIL [126] 2024 800 >16 > 240p 4,800 5 6 6 dynamics o
GAIA [36] 2024 9,180 >4 >256p 510 3 18 54 action o

These instructions are then fed into n selected text-to-video models to generate n videos for each
instruction, resulting in the video set V. Finally, a group of human evaluators is invited and instructed
to score each video based on a specified evaluation process, producing the set of scores S. Table
summarizes the current emerging datasets that evaluate both human perception and instruction.
Figure 5| presents a detailed analysis of the proportion of videos generated by each model in each
benchmark dataset.

EvalCrafter[139]: EvalCrafter is one of the first works that focus on comprehensive AIGVE created
in 2023. The dataset consists of 2,500 videos, each containing 8 frames with a resolution greater
than 512p. It includes 500 prompts generated based on real-world user data and large language
model assistance, ensuring a diverse and comprehensive set. The evaluation framework assesses
the generated videos across multiple aspects, including visual quality, motion quality, temporal
consistency, and text-video alignment. There are 17 objective metrics used, including Inception Score
(IS) [204]] for video quality, CLIP-Score [71] for text-video consistency, Flow-Score [229] for general
motion information, and Warping Error [229] for temporal consistency. Additional metrics include
Dover [265], SD-Score [199] for comparing generated video frames, BLIP-BLEU [120} [179]] for text
alignment evaluation, and several object and attribute consistency scores such as Detection-Score,
Count-Score, and Color-Score. Human evaluations are aligned with these objective metrics using a
linear regression model to correlate user scores with the evaluation results.

VBench[82]]: VBench, introduced in 2023, is another pioneer comprehensive benchmark suite
designed to evaluate video generative models by breaking down "video generation quality" into 16
distinct, hierarchical dimensions. The dataset includes videos with more than 6 frames each at a
resolution greater than 240p, along with 1,746 prompts across 24 sub-categories. The evaluation
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Figure 5: The Proportion of Videos Generated by Each Text-to-video Model.

framework employs a multi-dimensional approach, covering aspects such as video quality, temporal
quality, subject consistency, background consistency, motion smoothness, dynamic degree, aesthetic
quality, imaging quality, object class, human action, color, spatial relationship, scene, appearance
style, temporal style, and overall video-text consistency.

Human preference annotations are used to validate these metrics, ensuring they align with both human
perceptions and instructions of video quality. VBench’s multi-dimensional system provides detailed
feedback on the strengths and weaknesses of video generation models, offering valuable insights for
improving training data, model architecture, and evaluation methods.

Chivileva et al. [37]: The dataset consists of 1,005 videos generated from five recent text-to-video
(T2V) models, with each video containing more than 8 frames at a resolution greater than 128p.
This dataset is evaluated using several commonly used video quality metrics, including Inception
Score (IS) [204], Frechet Video Distance (FVD) [239]], and CLIPSim [262]. IS [204] measures
image quality and diversity using a class probability distribution. FVD [239] compares the feature
activations of real and generated videos in a pre-trained video classifier’s feature space, with lower
scores indicating better quality. CLIPSim [262] evaluates the semantic alignment between the initial
text prompt and the generated video by computing the average frame score using the CLIP model
[L86]. Additionally, the dataset includes extensive human evaluations to assess video naturalness
and alignment with the text prompt. Human evaluators rate the videos on a scale of 1 to 10 for
alignment (compatibility with the prompt) and perception (overall perceptual quality), resulting in a
comprehensive evaluation of T2V model outputs. This work highlights the limitations of existing
metrics and underscores the importance of human assessment in evaluating video naturalness and
semantic matching.

T2VQA-DB [[106]: This dataset is the largest-scale Text-to-Video Quality Assessment Database to
date, comprising 10,000 videos generated by nine different T2V models using 1,000 text prompts. The



dataset features videos with 16 frames each at a resolution of 512p. Models used include Text2Video-
Zero [96], AnimateDiff [[64]], Tune-a-Video [267], VidRD [3]], VideoFusion [149], ModelScope [228]],
LVDM [68], Show-1 [287]], and LaVie [253]. Each video is evaluated with a Mean Opinion Score
(MOS) obtained from 27 subjects, who assess both text-video alignment and video fidelity. The
subjects score the videos on a scale of 0 to 100, evaluating how well the generated video content
matches the text description and the overall perceptual quality of the video, considering factors
like distortion, saturation, motion consistency, and content rationality. The MOS scores are then
normalized to account for inter-subject scoring differences, resulting in Z-score MOS (MOSz). The
T2VQA-DB dataset is designed to facilitate the development of more accurate and comprehensive
metrics for evaluating the quality of text-generated videos, reflecting real user preferences.

T2VBench [86]: T2VBench is a comprehensive benchmark specifically designed to evaluate the
temporal dynamics of text-to-video generation models. The dataset comprises 5,000 videos generated
using three leading T2V models: ModelScope [228], ZeroScope [4]], and Pika [2], with each video
containing more than 16 frames at resolutions greater than 256p. The benchmark employs 1,680
carefully crafted prompts enriched with temporal dynamics lexicons derived from Wikipedia, covering
16 critical temporal evaluation dimensions. These dimensions include aspects such as explicit and
implicit event sequences, scene transitions, event timing, camera perspective transitions, direction of
movement, emotional changes, shape changes, weather pattern changes, age changes, acceleration,
and lighting and shadows. Each video is evaluated using human ratings collected on a Likert scale,
providing a comprehensive assessment of the model’s ability to handle complex temporal dynamics.
This benchmark not only highlights the strengths and limitations of current T2V models but also offers
valuable insights into improving the temporal consistency and overall quality of video generation in
future models.

VIDEOPHY [15]]: VIDEOPHY is a benchmark designed to evaluate whether videos generated by
text-to-video (T2V) models adhere to physical commonsense in real-world activities. The dataset
includes 9,300 videos generated using 9 diverse T2V models, such as Pika [2]], Lumiere [16]], and
VideoCrafter2 [31], conditioned on 688 high-quality, human-verified captions that depict interactions
between various states of matter, including solid-solid, solid-fluid, and fluid-fluid interactions. Each
video is assessed based on semantic adherence (whether the video accurately depicts the actions
and entities described in the text) and physical commonsense (whether the depicted actions follow
the laws of physics). Human evaluations reveal that the current models struggle significantly with
both aspects, with the best-performing model, Pika [2], achieving accurate semantic adherence and
physical commonsense in only 19.7% of the cases. This benchmark highlights the gap in current
T2V models’ ability to simulate the physical world realistically and provides a crucial resource for
developing more accurate and physically plausible video generation models.

TC-Bench [54]: TC-Bench is a benchmark specifically designed to assess the temporal composition-
ality of video generation models, both text-to-video and image-to-video. The benchmark evaluates
three types of compositional changes: attribute transitions (e.g., a chameleon changing color), object
relation changes (e.g., a person passing an object from one hand to another), and background shifts
(e.g., a cityscape transitioning from day to night). TC-Bench includes both text prompts and corre-
sponding ground-truth videos, allowing for evaluation of the model’s ability to generate seamless
transitions over time. Two new metrics, Transition Completion Ratio (TCR) and TC-Score, are
introduced to measure the extent to which generated videos align with the described transitions
and maintain consistency. The benchmark reveals that most current models achieve less than 20%
success in accurately completing the compositional changes, highlighting significant challenges and
opportunities for improvement in temporal video generation.

T2VSafetyBench [157]: T2VSafetyBench is a benchmark specifically designed to evaluate the safety
of text-to-video (T2V) generative models. The dataset includes 1,600 videos generated by various
T2V models using 400 malicious prompts that were meticulously crafted using large language models
and jailbreaking prompt attacks. The prompts are designed to test 12 critical safety aspects, including
pornography, violence, gore, discrimination, political sensitivity, and temporal risk, among others.
Each generated video is assessed for safety using a combination of human reviews and automated
evaluation via GPT-4 [171]], which provides high correlation scores with human assessments. The
evaluation results reveal that no single model excels across all safety dimensions, with different
models showing varying strengths and weaknesses. T2VSafetyBench serves as a critical resource
for identifying and mitigating the safety risks inherent in video generation, highlighting the need for
ongoing improvements in safety protocols as the capabilities of T2V models continue to advance.



VIDEOFEEDBACK [67]: VIDEOFEEDBACK is a large-scale benchmark dataset designed to
provide fine-grained human feedback for video generation. The dataset comprises 37,600 videos
synthesized by 11 different text-to-video models, including Pika [2]], Lavie [253]], SVD [19], and Sora
[[L'73], among others. These videos were generated based on prompts solicited from the VidProM
[250] dataset, which contains diverse and semantically rich text-to-video pairs. VIDEOFEEDBACK
is annotated by human raters across five key evaluation dimensions: Visual Quality, Temporal
Consistency, Dynamic Degree, Text-to-Video Alignment, and Factual Consistency. Each aspect is
scored on a scale from 1 (bad) to 4 (perfect). The annotations are designed to assess not only the
visual and technical quality of the videos but also their alignment with the provided text prompts and
adherence to factual information.

AIGC-VQA [145]: The AIGC-VQA dataset serves as a comprehensive benchmark for assessing
the quality of Al-generated content (AIGC) videos. The dataset consists of 10,000 videos generated
by various state-of-the-art T2V models such as Pika [2], Lumiere [16], and VideoCrafter2 [31]],
each video containing 16 frames at a resolution of 512p. AIGC-VQA encompasses three main
evaluation aspects: technical quality, aesthetic quality, and video-text alignment. Technical quality
measures distortions and temporal consistency using metrics like Frechet Video Distance (FVD)
[239] and CLIPSim [262]. Aesthetic quality evaluates visual appeal through factors like composition,
colorfulness, and non-toxic content. Video-text alignment assesses the semantic match between
the generated video and the text prompt using advanced vision-language models like BLIP [[119].
The dataset is annotated with Mean Opinion Scores (MOS) by 20 human evaluators, ensuring a
comprehensive assessment that aligns closely with human perception. This benchmark provides a
critical resource for developing and refining AIGC models, offering a robust framework for multi-
dimensional video quality evaluation.

DEVIL [126]: DEVIL is a benchmark designed to evaluate text-to-video (T2V) models from the
perspective of dynamics, an essential dimension for measuring the visual vividness and adherence
to text prompts. The dataset consists of 800 text prompts categorized into different dynamic grades
and evaluated using videos generated by models such as GEN-2 [201], Pika [2], VideoCrafter2
[31], OpenSora [298]], StreamingT2V [70]], and FreeNoise-Lavie [184]. DEVIL introduces three
key metrics: Dynamics Range, Dynamics Controllability, and Dynamics-based Quality. Dynamics
Range measures the extent of variations in video content, Dynamics Controllability assesses the
model’s ability to manipulate video dynamics in response to text prompts, and Dynamics-based
Quality evaluates the visual quality of videos with varying dynamics. The evaluation framework
incorporates multiple temporal granularities, including inter-frame, inter-segment, and video-level
dynamics scores, such as Optical Flow Strength, Structural Dynamics Score, Perceptual Dynamics,
Patch-level Aperiodicity, Global Aperiodicity, Temporal Entropy, and Temporal Semantic Diversity.
This comprehensive evaluation protocol demonstrates a Pearson correlation exceeding 90% with
human ratings, highlighting its effectiveness in advancing the development of T2V generation models.

GAIA [36]: GAIA is a comprehensive dataset for evaluating the action quality of Al-generated videos.
It includes 9,180 videos from 18 different text-to-video models, both from lab studies and commercial
platforms. Each video covers a variety of whole-body, hand, and facial actions. The dataset was
created with the involvement of 54 participants who conducted large-scale human evaluations to
assess action quality from three perspectives: subject quality, action completeness, and action-
scene interaction. GAIA provides quantifiable action state estimations based on human reasoning
behavior. The evaluation process resulted in 971,244 human ratings, normalized using Z-score
normalization. The main metrics used for evaluation include Spearman’s Rank-order Correlation
Coefficient (SRCC) and Pearson Linear Correlation Coefficient (PLCC). GAIA demonstrates the
value of multi-dimensional methods and highlights the poor correlation between traditional Action
Quality Assessment (AQA) methods and human evaluations. It serves as a benchmark to reveal the
strengths and weaknesses of various text-to-video models and aims to facilitate the development of
accurate AQA methods for Al-generated videos.

3.2 Evaluation Methods for AI-Generated Video Evaluation

With the availability of diverse benchmark datasets that align with various evaluation aspects, research
in AIGVE has seen rapid growth. This section categorizes and summarizes the advancements in
AIGVE research.
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Figure 6: Summary of Metric Collection Evaluation.

3.2.1 Metric Collection Evaluation

In the early stages of Al-generated video research, as the demand for robust evaluation methods
grew, researchers recognized the complexity of providing a comprehensive assessment. Instead of
assigning a single score to summarize the quality of the generated video, they began to decompose
the evaluation process into multiple aspects. Each aspect was assessed using established metrics,
allowing for a more granular and accurate evaluation of Al-generated videos.

VBench [83]]: VBench is a comprehensive benchmark suite that dissects video generation quality
into 16 distinct, hierarchical dimensions. These dimensions are divided into two primary categories:
Video Quality and Video Condition Consistency. The Video Quality category includes aspects
such as Subject Consistency, measured by DINO [23]] feature similarity across frames; Background
Consistency, assessed by calculating CLIP [186] feature similarity; Temporal Flickering, evaluated
using mean absolute difference across frames; Motion Smoothness, determined by motion priors in
video frame interpolation models; Dynamic Degree, estimated by RAFT [229] to measure the extent
of dynamics in synthesized videos; Aesthetic Quality, evaluated using the LAION [207] aesthetic
predictor; and Imaging Quality, measured by the MUSIQ [94] image quality predictor.

The Video Condition Consistency category is decomposed into dimensions such as Object Class
and Multiple Objects, where the success of generating specific objects and multiple objects in a
frame is detected by GRiT [268]]; Human Action, assessed by UMT [122] to determine if human
actions match those described in the prompts; Color and Spatial Relationship, evaluated by GRiT
[268]] and rule-based approaches, respectively; Scene, where consistency with the scene described
by the text prompt is checked using Tag2Text [81]; and Appearance Style and Temporal Style,
measured by CLIP [186] feature similarity and ViCLIP [254]], respectively. This multi-dimensional
evaluation framework not only aligns well with human perceptions, as validated by human preference
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annotations but also provides valuable insights into the strengths and weaknesses of different video
generation models.

EvalCrafter [139]: EvalCrafter evaluates text-to-video models across four key aspects: visual quality,
text-video alignment, motion quality, and temporal consistency. For visual quality, EvalCrafter
employs metrics such as video quality assessment aesthetic and technical ratings, which measure
common distortions like noise and artifacts, as well as the inception score (IS) [204] to evaluate the
diversity of the generated content. For text-video alignment, the framework introduces a CLIP-Score
[72] for consistency between text prompts and generated video frames, a BLIP-BLEU [120, [178]
score to assess the alignment between generated captions and input prompts, and a novel SD-Score
[200] that compares the generated quality with frame-wise results from stable diffusion models.
Motion quality is assessed using Action-Score for human actions and Flow-Score for general motion,
while temporal consistency is measured through metrics like warping error and semantic consistency
across frames.

The aspects and metrics of these works are summarized in Figure[6] Both works establish a founda-
tional framework for evaluating Al-generated video models, demonstrating strong correlations with
human judgment. However, the need for multiple individual metrics in these frameworks presents
challenges in integrating them into a unified pipeline. Additionally, evaluating a single video across
a sequence of metrics is time-consuming. Thus, there remains a need for a streamlined, unified
evaluation method.

3.2.2 Modeling Evaluation

Supported by the development of large-scale datasets, recent research trends have advanced toward
leveraging modeling methods to comprehensively evaluate Al-generated videos in a manner that
mimics human judgment. We observe two distinct branches emerging in parallel.

One branch focuses on the general evaluation of Al-generated videos which gives an overall evaluation
of the video.

VIDEOSCORE[67]: VIDEOSCORE is a significant advancement in the high-level evaluation of
Al-generated videos, leveraging the VIDEOFEEDBACK dataset. The model is built on the Mantis-
Idefics2-8B [87] backbone and trained using regression scoring with a linear layer. It achieves a
Spearman correlation of 77.1 on VideoFeedback-test.

T2VQA [105]: T2VQA is built on the T2VQA-DB. T2VQA employs a novel transformer-based
architecture that integrates features from both text-video alignment and video fidelity. The model
uses BLIP [[120] for frame encoding and Swin-Transformer [142] for capturing video fidelity, with a
large language model handling quality regression.

AIGC-VQA [145]: AIGC-VQA introduces a general perception metric for assessing the quality of
Al-generated videos, targeting three key aspects: technical quality, aesthetic quality, and video-text
alignment. The model employs a multi-branch architecture, with a 3D-Swin Transformer [277]]
handling technical quality, ConvNext [143] managing aesthetic evaluation, and a BLIP-based [119]]
branch, enhanced with a spatial-temporal adapter, assessing video-text alignment. The AIGC-VQA
model is trained using a divide-and-conquer strategy, progressively optimizing each branch to ensure
comprehensive video quality assessment.

Qu et al.[185]] addresses the quality assessment of Al-generated videos by categorizing evaluation
into three key dimensions: visual harmony, video-text consistency, and domain distribution gap.
The method incorporates a multi-modal approach, utilizing explicit prompt injection and implicit
text guidance to enhance video-text alignment. Additionally, the framework employs an auxiliary
inter-domain classification task to predict the source generative model, which significantly improves
the discriminative features and overall quality assessment performance.

Another branch focuses on evaluating specific aspects of the generated video while still considering
alignment with both human perception and instruction.

TC-Bench [54]: TC-Bench evaluates the temporal compositionality of Al-generated videos. TC-
Bench introduces two novel metrics, TCR and TC-Score, designed to measure the completion of
compositional transitions and overall text-video alignment.
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Miao et al. [157] focuses on evaluating the safety aspects of Al-generated videos, addressing
concerns around potentially harmful content. Leveraging proposed T2V SafetyBench, it evaluates
12 critical safety dimensions, including pornography, violence, discrimination, misinformation, and
temporal risks. The framework utilizes both automated assessments, primarily leveraging GPT-4,
and manual evaluations to ensure a comprehensive analysis of these safety aspects. T2VSafetyBench
revealed that no single model excels across all dimensions, with different models showing strengths
in various areas, such as Stable Video Diffusion [19] performing well against sexual content, while
Gen?2 [201]excelled in managing gore and disturbing content. This benchmark underscores the need
for a balanced trade-off between usability and safety in text-to-video generative models, emphasizing
the importance of focusing on video safety as these technologies continue to advance.

DEVIL [126]: DEVIL framework emphasizes the evaluation of dynamics in Al-generated videos, a
crucial aspect often overlooked by traditional metrics. The framework introduces a comprehensive
evaluation protocol focusing on three key metrics: dynamics range, dynamics controllability, and
dynamics-based quality. The framework establishes a benchmark with text prompts reflecting various
dynamics grades, allowing for a detailed assessment of a model’s ability to generate and control
dynamic content.

3.3 Foundations of AI-Generated Video Evaluation

Although still emerging, AIGVE builds on two key foundations: alignment with human perception
and alignment with human instructions. A solid understanding of these two foundational aspects is
crucial for comprehensively developing AIGVE.

In the subsequent sections of this survey, we introduce the research works related to these two
important foundation aspects and give further prospects based on the ground knowledge of these two
aspects.

Section 4] discusses alignment with human perception. This section investigates a detailed survey on
benchmark datasets as well as existing quality evaluation methods, offering a clear picture of how the
field of evaluating video perception quality evolved over the last decade.

Section[5]covers alignment with human instructions, considering both related benchmark datasets
and evaluation frameworks. This section summarizes the prior representative work in terms of the
alignment between video content and human instructions to introduce the previous development
trajectory of this field and how it has been influenced by the emergence of large language models.

Finally, Section[6]summarizes future perspectives in the field, identifying key challenges and potential
research opportunities. We discuss the integration of vision language models for video evaluation,
improvements in score interpretability, and the embedding of ethical and safety considerations within
AIGVE frameworks.

4 Alignment with Human Perception

A key objective of Al-generated video is to produce content that closely aligns with human perception.
Over the past decade, numerous benchmark datasets and evaluation techniques have been developed
to assess Al-generated videos based on criteria related to human perception. In this section, we
introduce several representative benchmark datasets, evaluation methods, and associated metrics.

4.1 Benchmark Datasets

A number of datasets have been curated for the development and validation of video quality assessment
models. This section details various collections of video sequences with different characteristics
and their corresponding quality scores. These videos vary in resolution, duration, distortions, and
the environments in which they were assessed, as well as in the methodologies used for assessing
video quality, including crowdsourcing platforms, controlled lab environments, and various subjective
quality metrics. The evaluation metrics employed across these datasets include Mean Opinion Score
(MOS) [220], Differential Mean Opinion Score (DMOS) [211]], Peak Signal-to-Noise Ratio (PSNR)
[209], Structural Similarity Index (SSIM) [258]], and no-reference metrics such as BRISQUE [164]
and NIQE [166], providing a comprehensive assessment of video quality from multiple perspectives.
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Videos from [LIVE-YT-HFR] Dataset

Videos from [MSU CVQAD] Dataset

Figure 7: Exemplar Cases from Alignment with Human Perception Benchmark Datasets. Here we
chose four representative frames from different video clips as a representation of the video within
each dataset.
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Table 2: Summary of Databases for Video Quality Assessment. *’Cont.” denotes the number of unique
video contents. "#Total’ represents the total number of videos. ’Dur.’” indicates the video duration in
seconds. #Subj.” refers to the number of subjects involved. ’Env.” specifies the environment for the
subjects. *Crowd’ stands for crowdsourcing.

Database Year  #Cont.  #Total  Resolution Dur. Distortions #Subj.  Enw. Linkﬁ
CVD2014 [170] 2014 5 234 480p, 720p 10-25 In-capture 210 In-Lab o
KoNViD-1k [78] 2017 1200 1200 540p 8 In-the-wild 642 Crowd O
LIVE-VQC [214] 2018 585 585 1080p, 240p 10 In-the-wild 4776 Crowd O
YouTube-UGC [255] 2019 1500 1500 4K, 360p 20 In-the-wild >8000  Crowd o
SPSS [17] 2020 14 224 1080p N/A In-the-wild 19 Crowd Q
UGC-VIDEO [125] 2020 50 550 720p 10 UGC+compression 30 In-lab O
ETRI-LIVE-STSVQ [113] 2021 15 437 4K 5-7 In-the-wild 34 In-lab o
LIVE-APV [208] 2021 33 315 1080p, 4K 7 In-the-wild 40 In-lab O
LIVE-YT-HFR [151] 2021 16 480 4K 10 In-the-wild 85 In-lab O
LIVE-LSVQ [280] 2022 39075 39075 1080p 5-12 In-the-wild 6284 Crowd o
MSU CVQAD [10] 2022 2500 2486 360p-1080p 10,15  Compression 10800 Crowd O
M-VCM [162] 2023 10 1628 1080p 6 In-capture N/A Crowd O

A summary of the benchmark datasets discussed in this section is presented in Table [2|and Figure
illustrates exemplar cases from several representative datasets.

CVD2014 [170]: The CVD2014 database contains 234 video sequences with in-capture distortions
across 5 different scenes. The videos come in resolutions of 720p or 480p and feature frame rates
that range from 9 to 30 fps. The lengths of these videos vary between 10 and 25 seconds, and they
are stored in AVI format. The authors recruited 210 participants to assess video quality, 158 of
whom were female, with ages ranging from 18 to 46 years and an average age of 24. Vision tests
were administered using EDTRS for acuity, FA.C.T. for contrast, and the Farnsworth D-15 for color
discrimination. The trials included a variety of video presentations, explained through example
videos to mitigate central bias in scoring. The experimental setup was conducted in a dark, controlled
environment featuring a 24-inch calibrated display. Participants were prepped with a demonstration
of video quality before using the VQone MATLAB toolbox for the tests. The observers maintained
an 80 cm viewing distance, ensured by a counterweight system. Each session lasted approximately
66 minutes, including vision testing, briefing, and training phases. Videos were shown sequentially in
random order, and participants rated them using graphical sliders, with results compiled as Mean
Opinion Scores (MOS).

KoNViD-1k [78]: KoNViD-1k is a comprehensive video quality database consisting of 1200 unique
video sequences. These videos, selected from the YFCC100m dataset (Flickr), exhibit a variety of
authentic distortions. Each video was clipped and resized to 540p in a landscape layout. The frame
rates are either 24, 25, or 30 fps, and each video has a duration of 8 seconds. The videos are in MP4
format. The authors utilized the CrowdFlower platform for crowdsourcing subjective video quality
assessments. Each participant was briefed on various video degradations and evaluated videos based
on a displayed quality scale. To enhance engagement and reliability, they used ’gold standard’ test
questions derived from a subset of 100 videos. This process ensured higher consistency among worker
responses. A 70% accuracy threshold was mandated. Overall, 642 participants from 64 countries
provided a total of 136,800 ratings, with each video receiving an average of 114 assessments. The
95% confidence interval on the MOS scale did not exceed 0.5.

LIVE-VQC [214]: The LIVE-VQC database features 585 unique video sequences that capture a
range of authentic distortions, including camera motion and night scenes. These videos have varying
resolutions from 240p to 1080p and include both landscape and portrait formats. The frame rates
are 20, 24, 25, and 30 fps, and each video is 10 seconds long. Stored in MP4 format, the videos
were subjectively evaluated using Amazon Mechanical Turk. In this study, 4,776 participants, aged
between 11 and 65 years and almost equally divided by gender, provided over 205,000 subjective
evaluations of 585 videos, which translates to approximately 240 votes per video. The majority of the
participants, from the U.S. and India, viewed the videos on displays that supported at least a 720p
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resolution. Chosen for their high reliability from previous tasks, they used only non-mobile devices
with specific browser requirements to ensure consistent performance. The study was designed with
stringent procedures to ensure reliable and consistent assessments of video quality. These procedures
included a detailed introduction, eligibility checks, comprehensive training, and testing phases with
ongoing feedback. Additionally, the study employed strategies to discard any unreliable data from
participants experiencing playback issues. It concluded with a survey to collect demographic data
and information about viewing conditions. The gathered MOS values are included in the database.
The methods used in this study allowed for the analysis to encompass a wide range of conditions,
thus providing a robust evaluation of video quality across a diverse participant pool.

YouTube-UGC [255]: The YouTube-UGC database is composed of 1500 video sequences with a
wide range of authentic distortions. These videos were sampled from YouTube and cover various
content types, including HDR, screen content, animation, and gaming videos. The resolutions span
from 360p to 4K, and frame rates include 15, 20, 24, 25, 30, 50, and 60 fps. Each video is 20
seconds long and is stored in MKV format. The subjective quality assessment was performed via
crowdsourcing on Amazon Mechanical Turk, with participation from over 8000 subjects, yielding
170159 ratings, roughly 123 per video. The database provides MOS and standard deviation values.

SPSS [17]: This dataset comprises 14 reference videos in a resolution of 1080p and 224 videos
with various distortions. The reference videos cover typical surveillance scenarios such as crowded
streets, transport hubs, parking areas, and stadiums. The applied distortions are noise, uneven
illumination, blur, and smoke. Noise was simulated using an additive white Gaussian noise model;
uneven illumination was created using a grayscale circular fading mask; blur was generated with
a motion filter to simulate movement; and smoke was blended using video editing software. Each
distortion was applied at four different severity levels. The authors employed a pairwise-comparison
method for subjective testing, where observers were shown pairs of distorted videos from the same
category and distortion type, but with varying severity levels, to assess each. Observers repeated this
for all possible video pairs, resulting in 6 pairwise comparisons per reference video. Participants
could score videos equally if they appeared similar. Preferred videos scored one point, while equal
assessments received 0.5 points per video. Each observer viewed the videos once, with the option
to rewatch. Scores from all observers were then aggregated to calculate MOS for each video by
averaging the scores over the number of observers. The authors utilized two benchmark metrics
for natural images and videos—PSNR and SSIM, along with a full-reference metric, VIF. Given
the absence of a ground truth in video surveillance, they also included two no-reference metrics,
BRISQUE and NIQE, averaging their values across all video frames. Nineteen observers conducted
these evaluations, with initial outlier detection based on non-transitivity. The authors then aggregated
the remaining data to derive subjective scores and tested correlation with objective metrics using
Spearman Rank Order and Pearson Linear Correlation Coefficients after nonlinear regression. They
found that the metrics did not consistently correlate with subjective assessments, particularly in a
video-surveillance context, which suggested a need for developing more specialized objective metrics.

UGC-VIDEO [125]: This dataset comprises 50 source videos from TikTok, representing diverse
user-generated content categories such as selfie, indoor, outdoor, and screen content. 400 videos were
randomly selected, each with a resolution of 720p, a frame rate of 30 FPS, and longer than 10 seconds.
They were transcoded using H.264/AVC and H.265/HEVC at five different quantization levels (QPs:
22,27, 32, 37, 42), resulting in 550 video sequences in total. In this study, 28 participants were
recruited and followed the subject screening procedures outlined in ITU-R BT 500.13. Participants
evaluated the quality of each video using a five-point scale. To reduce viewer fatigue, the study
was divided into three sessions, each lasting approximately 30 minutes. Each session included the
presentation of 16 or 17 original videos and their respective transcoded versions, shown in a random
sequence. Additionally, each session began with 10 preliminary ’dummy presentations’ of varying
quality levels to calibrate the participants’ responses; these initial evaluations were excluded from the
final analysis. Along with the MOS, the Differential Mean Opinion Score (DMOS) was calculated to
measure the quality difference between the original and transcoded videos.

ETRI-LIVE-STSVQ [113]: This dataset comprises 437 videos derived from 15 unique 4K, 10-
bit sources subjected to various levels of space-time subsampling and compression. The sources,
including selections from the Ultra Video Group, Harmonic 4K footage, and Netflix’s public library,
were adapted to specific video formats through cropping and chroma subsampling. Videos were
processed to include spatial resolutions ranging from 3840 x 2160 down to 960 x 540, using the
Lanczos kernel for both downsampling and upsampling to preserve the original resolution. Temporal
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subsampling involved reducing frame rates from 120 or 60 fps by dropping alternate frames and
employing Linear Filter Interpolation (LFI) to ensure smooth transitions and minimize artifacts.
Additionally, videos underwent compression using the HEVC Main 10 profile with the FFmpeg
libx265 encoder, with compression levels adjusted through the Quantization Parameter (QP) to match
the predetermined target bit rates, ensuring a range of perceptual quality levels. The videos were
displayed on setups supporting 3840x2160 resolution at 60/120 fps, which helped explore optimal
video coding practices under varied conditions. Thirty-four participants evaluated these videos
using a Single-Stimulus Continuous Quality Evaluation (SSCQE) method with hidden references.
Approximately 15,000 subjective quality evaluations were collected to analyze rate-distortion impacts.
Each video, approximately 5.61 seconds in length, was rated once on a continuous scale during three
30-minute sessions spread over three days to avoid viewer fatigue. Each session included between
145 and 146 videos and 15 hidden references, with the ratings transformed into differential DMOS.
To ensure unbiased video quality evaluations and minimize memory effects, several randomization
strategies were implemented. The playlist was initially shuffled repeatedly to prevent any video
content from appearing consecutively more than ten times. The videos were then organized into 30
groups, with each participant viewing ten groups per session. A round-robin ordering was employed
to ensure each video group was presented equally across all sessions and participants, avoiding
repetitive combinations. Finally, the playlist, including the undistorted reference videos and video
groups, was reshuffled before each session, ensuring significant separation between videos of the
same content.

LIVE-APV [208]: This dataset includes 315 video clips extracted from 45 source sequences,
originating from 33 uncompressed, high-quality videos across 10 distinct sports categories. These
source videos are available in either 1080p or 4k resolutions, are progressively scanned in the YUV
4:2:0 format, and have had their audio components stripped away. Each video is played at a consistent
rate of 30 fps. For analytical precision, longer videos were manually divided into shorter segments,
each roughly 7 seconds long, with careful attention to avoid overlapping or closely successive
segments. Six altered versions of each original sequence were creaed by applying various distortion
techniques including H.264 Compression, Aliasing, Judder, Flicker, Frame Drops, and Interlacing.
Compression artifacts were implemented using H.264 encoding with varying Constant Rate Factor
(CRF) values. Aliasing effects were created through a process of downscaling followed by upscaling
without the use of anti-aliasing filters. Motion judder was simulated using a 2:3 pulldown technique,
which can introduce irregular motion. Flicker was generated by alternating quantization parameters
(QP) between frames. Frame loss was replicated by strategically removing clusters of frames from
the video sequence. Lastly, interlacing artifacts were produced by separating even and odd lines to
create interlaced frames. To ensure a wide spectrum of perceptual qualities, each distortion type was
applied at multiple intensity levels, allowing for a comprehensive study of how different distortions
impact video quality across various severity ranges. This approach generated a diverse array of video
quality conditions for further evaluation. Subjective assessments were performed using the assembled
database, collecting over 12,000 evaluations from 40 participants. This evaluation took place in the
LIVE Subjective study room, where each video was rated on a numerical scale from 0 (lowest quality)
to 100 (highest quality).

LIVE-YT-HFR [151]: This dataset encompasses 480 videos, modified to 6 frame rates and 5
compression levels to study the effects of both factors. It originates from 16 natural scene videos at
120 fps, 11 of which come from the BVI-HFR database in 4K resolution and have been downsampled
to HD for public use. Additionally, five high-motion sports sequences were captured by the Fox
Media Group in 4K. Each original video was transformed into 30 test sequences across frame rates
ranging from 24 to 120 fps, using VP9 compression. The videos vary in resolution from 1080p to
4K, aligning with the shift toward 4K in streaming services. Quality assessment was uniform across
different resolutions. Three descriptors were measured for each video: Spatial Information (SI),
Temporal Information (TI), and Colorfulness (CF). SI was assessed using a Sobel magnitude, and
TI was calculated from luminance differences between frames. The authors conducted a subjective
evaluation involving 85 undergraduate volunteers, evenly split between 14 female and 71 male
participants aged 20-30, all with normal or corrected-to-normal color vision. They participated in
a study generating 19,000 quality ratings across 240 videos. Each participant was trained with 6
non-database videos to calibrate their understanding of expected video quality and instructed not to
rate based on content. Ratings were collected over sessions that did not exceed 40 minutes, using the
Single-Stimulus Continuous Quality Evaluation (SSCQE) method and a 5-point Likert scale via a
Palette gear console. Each video received a Mean Opinion Score (MOS) based on at least 42 ratings.
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Although not every video was rated by each participant, anchor videos common to all sets showed
consistent MOS.

LIVE-LSVQ [280]: This dataset features a diverse collection of 38,811 real-world videos, varying
in size, content, and distortion levels. It also includes 116,433 space-time video patches, known as
’v-patches’, and 5.5 million human perceptual quality annotations provided by 6,284 participants. The
source material was gathered from two major public user-generated content (UGC) video repositories:
the Internet Archive and YFCC-100M. Each video was processed to have an average duration of
seven seconds using ffmpeg. Unlike KoNViD-1k, this collection does not impose restrictions on
video resolution or aspect ratio, making it more representative of real-world content. The researchers
avoided applying scaling or additional processing that might alter the original quality. To ensure
the videos closely resembled UGC, they employed a mixed integer programming method to match
UGC feature histograms, considering 26 holistic spatial and temporal characteristics. To investigate
the relationship between global and local spatio-temporal qualities, the researchers developed three
distinct types of video patches (v-patches) from each video. The first type, known as the spatial
v-patch (sv-patch), preserves the original temporal duration of the video but reduces its spatial
dimensions to 40%. The second type, the temporal v-patch (tv-patch), maintains the original spatial
dimensions but cuts the temporal length to 40%. The third type, the spatio-temporal v-patch (stv-
patch), is reduced to 40% of the original dimensions across both spatial and temporal aspects. All
v-patches maintain the aspect ratio of their original videos. Although each v-patch originates from the
same source video, the overlap in volume between sv-patches or tv-patches and their corresponding
stv-patches is limited to 25%. The authors employed Amazon Mechanical Turk (AMT) for human
evaluations of both the original videos and the different types of v-patches. They conducted two
separate AMT tasks: one for the full-length videos and another for the three types of v-patches. On
average, each video and v-patch garnered 35 ratings from participants, providing a substantial dataset
for analysis.

MSU CVQAD [10]: This dataset comprises approximately 2,500 video streams that have been
encoded with five different compression protocols: H.264/AVC, H.265/HEVC, H.266/VVC, AV 1,
and VP9. The dataset includes 1,022 compressed streams across two encoding settings: 1 fps and
30 fps. Each video was encoded at three designated bitrates—1,000 kbps, 2,000 kbps, and 4,000
kbps—employing Variable Bit Rate (VBR) mode where applicable, or using specific QP/CRF values
to achieve these bitrates. The researchers utilized the Subjectify.us crowdsourcing platform to gather
subjective scores, amassing 766,362 valid responses from almost 11,000 participants, with a minimum
of 10 responses per video pair. Specifically, the dataset was segmented into five subsets based on
source videos, leading to five distinct comparison groups. Each subset comprised a collection of
source videos and their compressed versions. Comparisons involved evaluating all possible pairs
of compressed videos derived from a single source video, ensuring that each pair consisted only of
videos from the same source. The original source videos were also included in the comparisons.
Participants viewed each video pair sequentially and were asked to select the video with superior
visual quality or state if the quality was identical. They had the option to replay the videos. Each
participant compared 12 pairs, including two pairs with an evidently higher-quality option, which
served as verification questions. Responses from participants who failed these verification questions
were excluded. The Bradley-Terry model was employed to convert pairwise voting results into a
score for each video. Applying the model to the pairwise ranking data yielded consistent subjective
scores for each group of videos compressed from the same reference video.

M-VCM [162]: The dataset originated from 1628 Microsoft Teams calls conducted across 83
varied network environments, utilizing 10 source videos. Among these, eight videos featured an
individual speaking directly to the camera, and the remaining two recorded conversations between
two individuals. The resolution of all source videos was maintained at 1080p with a frame rate of
30 fps. The experiment simulated calls between two systems under a range of network conditions,
including constant and variable bandwidths, burst losses, and cross traffic, among others. These
conditions necessitated adjustments in video bitrate and resolution, influencing the overall video
quality through changes in bitrate, shifts in resolution, fluctuations in frame rate, and occurrences of
frozen or missing frames. Dual QR codes, positioned at the top-left and bottom-right corners of the
source videos and encoding the original frame index, were employed to aid frame alignment in live
video calls with the reference video. The degraded videos, recorded at 30 fps, were derived from
segments of calls lasting from 6 seconds to 2 minutes. They were evaluated for quality using the
Absolute Category Rating (ACR) scale as specified in ITU-T Recommendation P.910. Each video
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clip, on average, received 17 valid evaluations through a crowdsourced approach employing the P.910
Toolkit.

4.2 TImage Quality Assessment

Evaluating Al-generated videos presents a significant challenge due to the absence of reference
content for comparison or guidance. To address this, no-reference quality assessment methods
have been developed, allowing for the evaluation of video quality independently without relying on
reference data. These techniques were initially introduced and applied in the domain of Al-generated
Image Quality Assessment (IQA), and many of these early No-Reference (NR) IQA methods served
as the foundation for subsequent approaches in Al-generated video quality assessment. In this
context, we first review several key NR-IQA techniques that have laid the foundation for developing
early-stage Al-generated video quality assessment algorithms.

Early IQA methods were primarily developed using statistical approaches [163}[165]]. These methods
laid the foundation for evaluating image quality by relying on statistical features extracted from natural
images. With the introduction of deep learning, IQA techniques have seen substantial improvements,
particularly in handling complex, real-world distortions [276]. More recently, the incorporation of
advanced architectures, such as Vision Transformers (ViT) [51] and Swin-Transformers [[142], has
enabled the development of several methods that achieve competitive performance in the field. In the
remainder of this section, we highlight several representative Al-generated IQA methods that have
emerged from these advancements.

WaDIQaM|21]]: WaDIQaM proposed several pioneer model deep neural network architectures for
IQA. Characterized by its depth and versatility, it comprises 10 convolutional layers and 5 pooling
layers for effective feature extraction, along with 2 fully connected layers for regression tasks. This
architecture allows for end-to-end training, enabling the model to learn directly from raw input data
without the need for hand-crafted features or prior domain knowledge about the human visual system.
A unique aspect of the architecture is its adaptability for both no-reference and full-reference IQA
settings, facilitating joint learning of local quality and local weights, which represent the relative
importance of local quality to the global quality estimate. The model employs a patch-based approach,
where features are extracted from image patches, and local quality estimates are aggregated to derive
a global quality score. This method enhances the model’s robustness against various distortions,
including luminance and contrast changes, and allows for the effective pooling of local patch qualities.

RankIQA[138]]: The RankIQA approach to NR-IQA uses ranked image datasets generated from
synthetic distortions, which allows for effective training of deep learning models without the need for
extensive human-annotated data. By employing a Siamese Network architecture, RankIQA learns to
rank images based on their quality by leveraging the relative quality information derived from pairs
of images, rather than relying on absolute quality scores. This method addresses the critical challenge
of limited labeled datasets in the field, enabling the training of deeper and more complex networks
that can capture intricate features relevant to image quality. Additionally, the authors introduce an
efficient backpropagation technique that optimally utilizes computational resources by considering
all possible pairs within a mini-batch, significantly enhancing training speed and performance. The
experimental results demonstrate that RankIQA outperforms existing NR-IQA methods, showcasing
its effectiveness in correlating with human judgments of image quality.

dipIQ [150]: dipIQ develops an Opinion-Unaware Blind Image Quality Assessment (OU-BIQA)
model that can predict the quality of digital images without requiring access to their original pristine
counterparts. Traditional BIQA models rely heavily on subjective testing to collect ground truth data,
which is often slow, cumbersome, and expensive, leading to limited training datasets that may not
adequately represent the vast image space. In contrast, the dipIQ approach leverages large-scale
databases to automatically generate a substantial amount of reliable training data in the form of
quality-discriminable image pairs (DIPs). Each DIP is associated with a perceptual uncertainty
measure, allowing the model to learn from these pairs using a pairwise learning-to-rank algorithm,
specifically RankNet. This innovative method enables the dipIQ model to achieve higher accuracy
and improved robustness across various image content types, outperforming existing OU-BIQA
models. The research also explores extending the framework to a listwise learning-to-rank approach,
resulting in the dillQ index, which further enhances performance. Overall, dipIQ aims to address the
challenges of traditional BIQA by providing a more efficient and effective means of assessing image
quality objectively.
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MetalQA[302]]: MetalQA improves the evaluation of image quality by enabling models to learn
shared prior knowledge from various distortion-specific tasks, allowing for quick adaptation to
unknown distortions. Traditional methods often rely on pre-trained networks that are not specifically
designed for IQA, leading to generalization issues when faced with different types of distortions.
These methods typically require large amounts of annotated data, which is challenging to obtain for
IQA tasks. In contrast, the proposed MetalQA approach utilizes a bi-level gradient descent strategy
to learn a meta-model from multiple NR-IQA tasks, capturing the intricate relationships between
image data and human-perceived quality. This meta-model can generalize across different distortions,
enabling the system to quickly adapt to new, unseen distortions with minimal training data. By
leveraging the ability of humans to learn from limited examples, deep meta-learning allows for a more
efficient and effective evaluation of image quality, ultimately outperforming traditional methods in
both synthetic and authentic distortion scenarios. This capability is particularly valuable in real-world
applications where images may undergo various types of distortions throughout their lifecycle.

TReS[61]]: TReS integrates Convolutional Neural Networks (CNNs) with Transformers to leverage
both local and global features of images, enhancing the model’s ability to capture complex perceptual
qualities. Secondly, the model introduces a novel self-consistency loss mechanism that reinforces
representation learning without requiring additional labels or external supervision, allowing the
network to learn more robust features through transformations like flipping and rotation. This
approach improves the model’s generalization capabilities across different datasets. Additionally,
the authors employ a relative ranking strategy to better align the model’s predictions with human
subjective assessments, thereby increasing the correlation between objective and subjective quality
scores. The model is extensively evaluated on multiple publicly available datasets, particularly on
challenging datasets like FBLIVE. Overall, the combination of these innovative techniques results
in a powerful NR-IQA model that effectively assesses image quality in a way that closely mirrors
human perception, addressing limitations found in existing methods and setting a new benchmark in
the field.

RKIQT[123]: RKIQT significantly advances NR-IQA by introducing a novel approach that learns
reference information during training, thus eliminating the need for pristine reference images during
inference. Central to this framework is the Masked Quality-Contrastive Distillation (MCD) method,
which enables the student model to acquire comparative knowledge from a non-aligned reference
teacher network, enhancing its robustness and representation capacity. Additionally, the framework
incorporates inductive bias regularization to facilitate fast convergence and mitigate overfitting,
allowing the student model to fine-tune its quality-aware abilities by leveraging insights from various
teacher networks. Extensive experiments conducted on eight benchmark IQA datasets validate the
effectiveness and efficiency of RKIQT. Furthermore, the framework improves the feature extraction
process, enabling it to convey richer quality information while utilizing less input than existing
models.

CrossScore[260]: CrossScore distinguishes itself from traditional IQA methods primarily through
its innovative use of multiple unregistered reference images captured from different viewpoints,
allowing for evaluation without the need for ground truth images. This is particularly advantageous
in scenarios like Novel View Synthesis (NVS), where direct reference images are often unavailable.
Unlike traditional full-reference metrics, such as SSIM[257]], which require a single ground truth
image for comparison, CrossScore employs a neural network with a cross-attention mechanism that
facilitates detailed per-pixel evaluation by focusing on relevant features across multiple views. This
approach not only enhances the accuracy of the assessment but also aligns more closely with human
visual perception. Additionally, while traditional IQA methods are typically limited to single-view
comparisons, CrossScore is specifically designed for multi-view scenarios, making it more versatile
for various applications. Overall, CrossScore addresses the limitations of existing IQA frameworks
by providing a more flexible, accurate, and perceptually relevant evaluation method.

DepictQA-Wild[282]: DepictQA-Wild leverages Vision Language Models to enhance the evaluation
of image quality through linguistic descriptions that align with human perception. The method is
structured around a multi-functional task paradigm that encompasses both single-image assessment
and paired-image comparison, allowing for a comprehensive evaluation of image quality across
various scenarios. A significant contribution is the construction of a large-scale dataset, DQ-495K,
which includes 35 types of distortions at five levels, ensuring diverse and high-quality training data.
The model retains the original image resolution during training, which is crucial for accurately
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perceiving resolution-related quality issues. Additionally, DepictQA-Wild incorporates a confidence
estimation mechanism that filters low-quality responses, enhancing the reliability of the assessments.

4.3 Video Quality Assessment

Video Quality Assessment (VQA) algorithms aim to predict video quality in alignment with human
perception. The rapid expansion of social media platforms, such as YouTube, Facebook, and TikTok,
has driven a surge in no-reference user-generated video content. While professional-generated content
has received less attention, possibly due to copyright concerns, much of the recent research in VQA
has focused on no-reference user-generated content. For no-reference (NR) VQA, a basic approach
involves assessing the quality of each frame using NR-IQA methods and aggregating the results to
produce an overall video quality score. However, compared to NR-IQA, NR-VQA must account for
temporal distortions, which adds complexity by requiring an understanding of time-dependent quality
degradations.

Early NR-VQA algorithms are often designed to address specific types of distortions, such as those
caused by transmission or compression artifacts 215} 240} [177} 244, 27, 95]. Their methods are
usually statistical-based, which leverage handcrafted machine learning matrices, such as SVM[69],
to train regression models for perceptual quality prediction[[13} 2151202} [167, (124} 213].

More contemporary methods adopt complex neural networks such as CNN[112]], ViT[51], or Swin-
Transformer[142]] to extract a vast array of perceptually relevant features[ 1182231291263} 297, [284],
processing videos in an end-to-end manner. Some of these methods extract multi-scale features to
capture both global and local information, which helps in modeling different levels of perceptual
quality[286) 49, [297].

Given the subjective nature of video quality assessment, recent models are increasingly looking at
ways to decompose a single no-reference VQA score into multiple dimensions [256 266} 224} 41]],
such as aesthetics feature, semantic feature, distortion feature, motion feature, etc. They may adopt
domain-fusion or knowledge transfer to incorporate information from different feature dimensions,
enhancing the overall understanding of video quality [285| [160, [134]. We summarize the VQA
methods discussed in this section chronologically in Table[3] while Figure 8| provides an overview of
these methods categorized by their backbone architecture.

4.3.1 Early-stage VQA

VMAF[13]: Video Multi-method Assessment Fusion framework in video quality assessment lies in
its innovative integration of multiple quality-aware features and its focus on both spatial and temporal
video distortions. VMAF employs a Support Vector Regression (SVR) model that aggregates
elementary video quality metrics, such as Detail Loss Metric (DLM), Visual Information Fidelity
(VIF), and Temporal Information (TI), to predict overall video quality. This model effectively weights
the contributions of each feature, aligning objective predictions with subjective ground truth data.
However, VMAF’s initial design primarily captures compression and scaling artifacts, lacking robust
temporal quality measurements. To address this limitation, the authors propose two enhancements:
SpatioTemporal VMAF, which incorporates strong temporal features into a unified regression model,
and Ensemble VMAF, which combines predictions from multiple models to improve accuracy. Both
approaches leverage efficient temporal video features, allowing for better generalization across diverse
datasets while maintaining computational efficiency. The introduction of a large subjective database
for training further strengthens the model’s predictive capabilities, making VMAF a powerful tool for
real-time video quality assessment in various applications, including adaptive streaming and digital
cinema.

Temporal Pooling[233]]: Temporal Pooling enhances video quality assessment by integrating mul-
tiple temporal pooling strategies to produce a more reliable and accurate quality prediction. The
method operates in two phases: first, it maps the input features from NR-IQA models to frame-level
quality predictions, and second, it learns a regression function that fuses these temporally pooled
predictions into a final quality score. This dual-phase training ensures that Temporal Pooling captures
diverse aspects of perceptual quality by leveraging the strengths of various pooling methods, such as
Hysteresis[234]), and traditional statistical means. The model’s robustness is demonstrated through
its performance across different datasets, particularly in scenarios with varying motion and quality
dynamics.
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4.3.2 CNN-based VQA

VSFA[117]): VSFA introduces a novel no-reference video quality assessment (NR-VQA) model that
uniquely integrates knowledge from the human visual system into a deep learning framework. The
model employs a modified pre-trained Convolutional Neural Network (CNN) to extract content-aware
features from video frames, which are crucial for understanding the perceived quality based on video
content. Following feature extraction, a Gated Recurrent Unit (GRU) is utilized to model long-term
dependencies, allowing the model to predict frame quality effectively. Additionally, the method
incorporates a differentiable, subjectively-inspired temporal pooling layer that accounts for temporal
hysteresis effects, ensuring that the overall video quality is assessed in a manner that reflects human
perception.

VIDEVALJ235]: VIDEVAL improves upon VQA models by employing a feature selection and
fusion strategy that optimally combines the strengths of various high-performing blind VQA (BVQA)
models while maintaining computational efficiency. By extracting 60 relevant features from a pool
of 763 statistical features used in prior methods, VIDEVAL effectively balances performance and
resource consumption, costing comparely lower computational costs. The model leverages a diverse
set of features that capture different perceptual domains, enhancing its robustness across various
datasets and use cases. Additionally, the integration of deep learning features through ensembling with
models like ResNet-50 and KonCept512 has been shown to further elevate performance, indicating
the potential of transfer learning in the UGC-VQA context.

Patch-VQ[281]: Patch-VQ develops two key architectures: Patch VQ (PVQ) and PVQ Mapper. PVQ
employs a deep neural network that integrates both 2D and 3D feature extraction to effectively capture
complex distortions in videos. By learning the relationships between global video quality and local
space-time v-patch quality, PVQ achieves state-of-the-art performance on various user-generated
content datasets, surpassing existing models. Its local-to-global architecture enhances generalizability
across diverse video content, making it robust in predicting perceptual quality. Additionally, the
PVQ Mapper introduces a novel capability to generate detailed space-time quality maps, which
allow for the localization and visualization of distortions within videos. This feature not only aids
in understanding the nature of video quality degradation but also provides actionable insights for
content creators and streaming platforms.

MDTVSFA[118]: MDTVSFA designs a three-stage framework to effectively tackle the complexities
of assessing in-the-wild videos. The first stage involves a relative quality assessor that predicts the
relative quality of videos using a monotonicity-induced loss, ensuring consistent quality rankings
aligned with human perception. This stage incorporates content-aware feature extraction and models
temporal-memory effects, enhancing the model’s ability to account for the nuances of human visual
perception. The second stage employs a nonlinear mapping module, utilizing a 4-parameter logistic
function to translate relative quality scores into perceptual quality, addressing the nonlinearity inherent
in human perception of video quality. Finally, the third stage focuses on dataset-specific perceptual
scale alignment, which aligns the predicted perceptual quality with subjective quality assessments.

GSTVQA[29]: GSTVQA introduces a no-reference VQA framework that effectively assesses the
perceptual quality of videos across diverse acquisition, processing, and compression techniques. It
employs a multi-scale feature extraction scheme that captures quality features at different scales,
enhancing the model’s ability to adapt to various video characteristics. Besides, an attention module
is integrated to weight the extracted features based on their importance, ensuring that the most
relevant information is prioritized during quality prediction. Additionally, it incorporates a Gaussian
distribution to unify the quality features of each frame, with learnable mean and variance parameters
that help mitigate the domain gap caused by varying content and distortion types. Furthermore, the
model utilizes a pyramid aggregation module in the temporal domain, which effectively combines
features over time to improve prediction accuracy.

RAPIQUE[236]: RAPIQUE integrates both spatial and temporal scene statistics with deep learning
features to achieve rapid and accurate predictions. It employs a two-branch framework that combines
low-level scene statistics and high-level deep convolutional features, allowing for a comprehensive
analysis of video quality. The model utilizes aggressive spatial and temporal sampling strategies to
exploit content and distortion redundancies, enhancing efficiency without compromising performance.
Additionally, RAPIQUE introduces a novel spatial NSS feature extraction module, providing a
cost-effective alternative to traditional feature-based models. It also features a pioneering temporal
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statistics model that captures bandpass regularities in natural videos, making it suitable for motion-
intensive content.

CompressedVQA [223]]: The proposed deep learning-based VQA framework comprises three main
components: the feature extraction module, the quality regression module, and the quality pooling
module. The feature extraction module fuses features from intermediate layers of a convolutional
neural network (CNN), enabling the model to leverage both low-level visual information and high-
level semantic features, which enhances the quality-aware feature representation for both full-
reference and no-reference tasks. The quality regression module employs a fully connected layer
to convert these quality-aware features into frame-level quality scores. Finally, the quality pooling
module utilizes a subjectively-inspired temporal pooling strategy to aggregate frame-level scores into
a comprehensive video-level score. This end-to-end learning approach allows the model to effectively
capture the complex relationships between video quality and raw pixel data, outperforming existing
state-of-the-art VQA models on various datasets, including the Compressed UGC VQA database.

SimpleVQA[224]: SimpleVQA introduces an effective and efficient deep learning-based architecture
that integrates a feature extraction module, a quality regression module, and a quality pooling
module. The model extracts two types of quality-aware features: spatial features for addressing
spatial distortions and spatial-temporal features for capturing motion distortions, with spatial features
learned directly from raw video pixels in an end-to-end manner and motion features derived from a
pretrained action recognition network. Additionally, the model employs a multi-scale quality fusion
strategy to effectively assess video quality across different resolutions, utilizing multi-scale weights
derived from the contrast sensitivity function of the human visual system, which considers viewing
environment information. This comprehensive approach not only enhances the model’s performance
but also demonstrates its generalizability.

HVS-5M|286]: HVS-5M revisits the Human Visual System (HVS) and integrating five representative
characteristics to enhance the VQA evaluation process. The model is structured around five key
modules: the visual saliency module, which employs SAMNet to generate a saliency map; the content-
dependency module and the edge masking module, both utilizing ConvNeXt to extract spatial features
that are weighted by the saliency map; the motion perception module, which leverages SlowFast to
capture dynamic temporal features; and the temporal hysteresis module, which simulates the memory
mechanism of human perception. This domain-fusion design allows HVS-5M to simultaneously
assess frame-level spatial features and video-level temporal features.

DOVER|[266]: Disentangled Objective Video Quality Evaluator presents advancements, particularly
for user-generated content (UGC) VQA. It develops the DIVIDE-3k dataset, which comprises 3,590
videos and 450,000 subjective quality opinions, capturing both aesthetic and technical perspectives on
video quality. In addition, DOVER employs an architecture that disentangles aesthetic and technical
evaluations, allowing for a more nuanced assessment of video quality. Furthermore, the model
incorporates a subjectively-inspired fusion strategy that improves overall quality predictions, making
it more reliable for practical applications. Finally, DOVER also provides insights into the perceptual
mechanisms underlying human assessments of video quality.

MD-VQAJ[296]: MD-VQA introduces a framework specifically designed for evaluating user-
generated content (UGC) live videos. It developed a large-scale UGC Live VQA database, which
comprises 418 diverse source videos and 3,762 compressed versions generated under various encod-
ing settings. This database serves as a critical resource for training and validating VQA models. The
core of the MD-VQA model lies in its multi-dimensional approach, which assesses video quality
through three key components: semantic features, distortion features, and motion features. Seman-
tic features are extracted using pretrained convolutional neural networks (CNNs), capturing the
content-related aspects of the videos. Distortion features are derived from specific handcrafted image
distortion descriptors, addressing common quality issues such as blur and noise. Motion features
are obtained through pretrained 3D-CNNs, which analyze the temporal dynamics of the video clips.
By integrating these diverse feature sets, the MD-VQA model could provide a more holistic and
interpretable assessment of visual quality.

Light-VQA[49]: Light-VQA is a specialized quality assessment framework tailored for low-light
video enhancement, which integrates handcrafted features with deep-learning-based features to
effectively represent quality-aware characteristics of enhanced videos. The model emphasizes the im-
portance of brightness and noise, which significantly impact low-light video quality, by incorporating
specific features such as brightness, brightness consistency, and noise into its design. Second, Light-
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VQA leverages a newly constructed Low-Light Video Enhancement Quality Assessment (LLVE-QA)
dataset, comprising 254 original low-light videos and 1,806 enhanced videos generated by various
state-of-the-art low-light video enhancement (LLVE) algorithms, facilitating a comprehensive evalua-
tion of enhancement techniques. This model not only enhances the assessment of low-light video
quality but also serves as a foundational tool for future research in low-light video enhancement
algorithms, bridging the gap between enhancement techniques and quality evaluation.

Ada-DQA[134]: Adaptive Diverse Quality-aware Feature Acquisition integrates diverse pretrained
models to capture a comprehensive range of quality-related features, such as content, distortion, and
motion. The framework comprises three key components: first, it selects multiple frozen pretrained
models as feature extractors, which reduces computational costs while retaining essential quality
information. Second, the Quality-aware Acquisition Module (QAM) adaptively aggregates features
from these models, applying dynamic weights to emphasize the most relevant features for each video
sample. This adaptive approach is further enhanced by a sparsity constraint that promotes focus on
critical quality-related aspects. Finally, the learned quality representation serves as supplementary
supervisory information during the training of a lightweight VQA model, utilizing knowledge
distillation to optimize performance while minimizing computational demands during inference.

BVQAJ261]: Blind Video Quality Assessment introduces a structured approach that enhances the
accuracy and reliability of quality predictions across diverse video content. The model comprises
three key components: a base quality predictor, a spatial rectifier, and a temporal rectifier. The base
quality predictor processes a sparse set of spatially down-sampled key frames to generate an initial
quality estimate. The spatial rectifier, utilizing a shallow convolutional neural network, refines this
estimate by analyzing the Laplacian pyramids of the keyframes at their actual spatial resolution,
adjusting the quality score based on spatial resolution changes. Similarly, the temporal rectifier
employs a lightweight CNN to assess video chunks around the keyframes at the actual frame rate,
further refining the quality prediction by accounting for temporal variations. This modular design not
only allows for targeted adjustments based on specific distortions but also facilitates the integration
of additional rectifiers for other video attributes, enhancing the model’s extensibility.

4.3.3 Transformer-based VQA

StarVQA[269]: StarVQA leverages a space-time attention network built on the Transformer archi-
tecture. It implements a unique vectorized regression loss function, which encodes mean opinion
scores (MOS) into a probability vector, enhancing the training process. StarVQA effectively captures
long-range spatiotemporal dependencies by incorporating space-time position information into the
input, allowing it to analyze video sequences more comprehensively. The architecture alternates
between divided space and time attention mechanisms, enabling the model to focus on both spatial and
temporal features simultaneously. Additionally, the model’s design is optimized for high-resolution
videos, revealing the advantages of the Transformer architecture in this context.

FANet[263]: Fragment Attention Network introduces the match constraint for pooling layers, which
aligns pooling operations with sampled mini-cubes, ensuring controlled pixel fusion. FANet employs
a modified Video Swin Transformer backbone, enhanced with Gated Relative Position Biases (GRPB)
to accurately represent pixel positions within fragments. Additionally, it incorporates an Intra-Patch
Non-Linear Regression (IP-NLR) head, replacing the traditional pool-first approach, which allows
for the prediction of local quality maps rather than just quality scores. The model demonstrates
unprecedented efficiency, achieving up to 1612x faster inference times compared to existing methods
while maintaining competitive accuracy. Overall, FANet’s GRPB and IP-NLR modules position it as
a robust solution for efficient and accurate video quality assessment, particularly in the context of
increasingly large and complex video data.

Zoom-VQA[297]: Zoom-VQA reaches high VQA performance by effectively capturing spatio-
temporal features across three levels: patches, frames, and clips. The model comprises three key
components: the patch attention module, which focuses on region-of-interest in the spatial dimension;
the frame pyramid alignment, which addresses multi-level feature information; and the clip ensemble
strategy, which integrates distortions over the temporal dimension. This comprehensive design allows
Zoom-VQA to analyze videos in a hierarchical manner, enhancing its ability to assess quality by
considering both local and global information. The architecture includes two branches: an image
quality assessment (IQA) branch that processes individual frames for global insights, and a video
quality assessment (VQA) branch that utilizes spatio-temporal information from video segments.
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SB-VQA[80]: Stack-Based Video Quality Assessment advances the understanding and application
of VQA in video enhancement and restoration. It introduces a scalable stack-based architecture
that enhances the evaluation of video quality by effectively capturing both spatial and temporal
features. Additionally, the framework is fine-tuned on a newly constructed dataset, PGCVQ, which
consists of professionally generated content, addressing the gap in VQA research focused on such
videos. This dataset allows for a more accurate assessment of video quality in real-world applications.
Furthermore, SB-VQA incorporates a novel approach to analyze the influence of video content on
subjective quality perception, utilizing heatmaps to explore the relationship between VQA algorithms
and video characteristics. This multifaceted analysis not only validates the effectiveness of existing
VQA methods on professionally generated content but also highlights the importance of content
characteristics, such as resolution and distortion, in human quality assessment.

VQT[284]: Visual Quality Transformer introduces a Sparse Temporal Attention (STA) mechanism
that efficiently selects keyframes by analyzing the temporal correlation between frames, significantly
reducing computational complexity from O(T?) to O(TlogT). This allows VQT to focus on
frames that contain critical distortions, enhancing the model’s ability to perceive multi-distortion
characteristics in videos. Secondly, VQT employs a Multi-Pathway Temporal Network (MPTN) that
stacks multiple STA modules with varying sparsity levels, enabling simultaneous capture of different
distorted features. This dual-component architecture not only improves the model’s performance on
non-reference VQA tasks but also demonstrates superior results compared to state-of-the-art methods,
achieving notable increases in performance metrics like PLCC on various datasets. Additionally,
VQT exhibits good generalization capabilities, making it applicable to other computer vision tasks,
such as video classification, while maintaining lower computational costs compared to traditional
dense attention mechanisms.

SSL-VQA[L60]]: SSL-VQA leverages a self-supervised Spatio-Temporal Visual Quality Representa-
tion Learning (ST-VQRL) framework, which serves as a robust feature extractor for video quality.
The method is designed to operate effectively with limited labeled data, addressing the challenges
posed by user-generated content (UGC) videos that often lack reference quality. SSL-VQA employs
a dual-model architecture that facilitates knowledge transfer between two quality prediction models,
enhancing the learning process through a combination of supervised and semi-supervised learning
techniques. The first stage focuses on self-supervised learning to capture rich spatio-temporal features
from unlabelled videos, while the second stage utilizes these features in a semi-supervised framework
to optimize performance using a small set of labeled data. By incorporating a novel statistical
contrastive learning loss, SSL-VQA improves the robustness of the learning process.

COVER[41]: COmprehensive Video quality EvaluatoR integrates three distinct branches that evalu-
ate video quality from technical, aesthetic, and semantic perspectives. The architecture comprises a
Swin Transformer backbone for the technical branch, which processes spatially sampled crops to
assess technical quality. The aesthetic branch employs a ConvNet that analyzes subsampled frames to
derive aesthetic quality, while the semantic branch utilizes a CLIP image encoder to extract high-level
semantic information from resized frames. A key innovation of COVER is the Simplified Cross-
Gating Block (SCGB), which facilitates interaction between the branches, allowing for effective
feature fusion before the final quality prediction. This multi-faceted approach enables COVER to
generate a comprehensive quality score by averaging the scores from each branch, thus providing
a more holistic evaluation of video quality. The model’s design not only enhances the accuracy
of quality assessments but also ensures real-time processing capabilities for high-definition videos,
making it suitable for large-scale applications in video streaming platforms.

Light-VQA+[300]: Light-VQA+ enhances the capability to evaluate exposure-corrected videos
through a multi-dimensional approach that integrates vision-language guidance. Unlike its predeces-
sor, Light-VQA[49]], which relied on traditional handcrafted feature extraction methods, Light-VQA+
leverages advanced deep learning techniques, specifically utilizing multimodal large language models
(MLLMs) like CLIP for improved feature extraction related to brightness, noise, and brightness
consistency. The model divides input videos into clips, extracting both spatial information (via
Swin-Transformer and CLIP) and temporal information (using the SlowFast Model and CLIP). A
cross-attention module fuses these diverse features, followed by fully connected layers that regress the
fused features into a unified quality score. Additionally, Light-VQA+ introduces trainable attention
weights to mimic the Human Visual System (HVS), allowing the model to prioritize certain video
clips based on perceived importance. This results in a more accurate and efficient assessment of video
quality, particularly for low-light and over-exposed videos.
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PTM-VQAI285]: PTM-VQA utilizes a novel approach of extracting features from multiple pretrained
models with fixed weights, allowing for the integration of various knowledge domains without
incurring significant computational costs. This is particularly beneficial as it enables the model to
capture distinct characteristics related to video quality, such as content attractiveness and distortion
types. Secondly, PTM-VQA introduces an Intra-Consistency and Inter-Divisibility (ICID) loss
function, which imposes constraints on the extracted features to ensure they reside in a unified
quality-aware latent space while promoting separation among different quality clusters. This dual
constraint mechanism enhances the model’s ability to generalize across different datasets.

Priorformer[180]]: PriorFormer enhance adaptability and representation capabilities. Central to
this approach is the Content Prior Features Extractor, which leverages the CLIP model to generate
detailed content embeddings that capture the semantic essence of the video. Complementing this is
the Distortion Prior Feature Extractor, which constructs a distortion graph to identify and represent
various distortion types and levels present in UGC videos. These two sets of embeddings are utilized
as adaptive prior tokens within the vision transformer architecture, allowing the model to effectively
incorporate both content and distortion information into the quality assessment process. Furthermore,
PriorFormer includes a temporal feature fusion module that employs gated recurrent units (GRU) to
aggregate frame-level quality assessments over time, addressing the temporal dynamics inherent in
video content. This combination of content and distortion priors, along with the temporal perception
mechanism, enables PriorFormer to provide a more nuanced and accurate evaluation of video quality.

ReLaX-VQA[252]: ReLaX-VQA employs a spatio-temporal fragment sampling module that effec-
tively captures the quality-aware features from successive video frames by utilizing frame differencing
and optical flow techniques. This innovative approach allows the model to analyze both spatial and
temporal aspects of video quality, addressing the complexities inherent in user-generated content
(UGC). Secondly, the model incorporates a deep neural network (DNN) layer stack module, which
fuses multi-layered features extracted from the video frames, enhancing the model’s ability to rec-
ognize and assess various quality distortions. Finally, the quality regression module translates the
extracted features into a quality score, providing a robust evaluation of video quality without the need
for reference content.

4.3.4 CLIP-based VQA

BVQI[264]: Blind Video Quality Index advances video quality assessment (VQA) by integrating
the Semantic Affinity Quality Index (SAQI) and its localized variant, SAQI-Local. BVQI leverages
the capabilities of Contrastive Language-Image Pre-training (CLIP) to evaluate video quality based
on semantic content, allowing for a robust assessment of both aesthetic and authentic distortions
without the need for human-annotated quality scores. The SAQI component focuses on measuring the
affinity between visual features and textual prompts, effectively capturing semantic-related quality
perceptions. Additionally, the BVQI incorporates two technical naturalness metrics: the Spatial
Naturalness Index and the Temporal Naturalness Index, which enhance the overall quality prediction
by considering both spatial and temporal aspects of video content. The method also introduces an
efficient fine-tuning strategy that optimizes text prompts and fusion weights.

KSVQE[146]: Kaleidoscope Short-form Video Quality Evaluator is an efficient VQA framework,
particularly for short-form user-generated content (S-UGC). Firstly, it introduces a large-scale
kaleidoscopic short-form video database, termed KVQ, which comprises 4200 videos collected from
popular platforms, addressing the unique challenges posed by diverse content creation modes and
sophisticated processing workflows. KSVQE incorporates innovative components such as the Quality-
Aware Region Selection module (QRS) and Content-Adaptive Modulation (CaM), which leverage
the capabilities of the pre-trained vision-language model CLIP to enhance content understanding
and identify quality-determined regions. Additionally, the model integrates a Distortion-Aware
Modulation (DaM) module, utilizing the CONTRIQUE model to improve distortion identification,
thereby addressing the indistinguishability of distortions in S-UGC videos. The combination of these
modules allows KSVQE to effectively capture quality-aware content and complex distortions.

RQ-VQA[225]]: RQ-VQA is specifically tailored for social media videos, which often exhibit unique
challenges due to diverse content and complex processing workflows. The method enhances the
Simple VQA framework by integrating rich quality-aware features extracted from various pre-trained
models, including both blind image quality assessment (BIQA) and BVQA models. Key components
of the proposed model include a trainable spatial quality module and a fixed temporal quality module,

27



Ensemble Learning

SVR-based VMAF

Early-stage VSFA
Gated Recurrent Unit
Y MDTVSFA

Local-to-global Model Patch-VQ

BVQA
RAPIQUE
CompressedVQA

SimpleVQA
Modular Learning é DOVER
§\ MD-VQA

Ada-DQA

VIDEVAL

CNN-based / GSTVQA

Domain Fusion HVS-5M

Zoom-VQA

General Purpose Video

FANet
Quality Assessment

Local-to-global Model Light-VQA
StarVQA
VQT

SB-VQA

Modular Learning Priorformer

Light-VQA+

I

SSL-VQA

Knowledge Transfer / PTM-VQA

-
\

Transformer-based

(

Domain Fusion RelLaX-VQA
Local-to-global Model BVQI
Modular Learning KSVQE
CLIP-based / UG-VOA
\ Knowledge Transfer
RQ-VQA

Figure 8: Summary of mentioned video-human perception alignment benchmarks by backbone.

which work in tandem to capture both spatial and temporal distortions effectively. Additionally, the
model incorporates features from deep learning architectures, such as motion and jerkiness metrics,
to improve quality prediction accuracy. Overall, the contributions lie in the innovative integration of
multiple quality-aware features and the adaptability of the Simple VQA framework to address the
specific needs of social media video quality evaluation.

UGVQI293]: Unified Generative Video Quality provides a structured framework that comprehen-
sively evaluates the quality of Al-generated content (AIGC) videos across three critical dimensions:
spatial quality, temporal quality, and text-to-video alignment. The model consists of three key mod-
ules: a feature extraction module, a text-visual feature fusion module, and a quality regression module.
The feature extraction module captures spatial features from keyframes and temporal features from
video sequences, ensuring a robust representation of the video content. The text-visual feature fusion
module integrates visual features with textual semantics derived from the prompts, enhancing the
model’s ability to assess alignment between generated videos and their descriptions. Finally, the
quality regression module synthesizes these features to produce a comprehensive quality score. By
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leveraging advanced techniques such as CLIP for visual and textual feature extraction and SlowFast
for motion representation, UGVQ addresses the unique challenges posed by AIGC videos.

4.4 Evaluation Metrics

The algorithms mentioned in previous sections are usually evaluated based on the correlation of
subjective and objective ratings. Among various statistical indices, SRCC, KRCC, PLCC, RMSE and
MAE are five frequently used metrics to highlight various facets of the VQA model’s performance.
The correlation between the subjective quality ratings and the objective predicted scores is calculated
by SRCC, KRCC, and PLCC, which show the prediction monotonicity. The error between the
subjective quality ratings and the objective predicted scores is computed by RMSE and MAE, which
shows the prediction accuracy. Better performance is indicated by greater (near to 1) SRCC, KRCC,
and PLCC values and lower (closer to 0) RMSE and MAE values. The details of these five metrics
are introduced as follows:

Spearman Rank-order Correlation Coefficient (SRCC) The Spearman Rank-Order Correlation
Coefficient is a non-parametric measure used to evaluate the strength and direction of the monotonic
relationship between two ranked variables. Unlike Pearson’s correlation, which assesses linear
relationships, SRCC is useful when data do not meet the assumptions of normality or when the
relationship is not linear. It works by ranking the data points and then applying Pearson’s correlation
formula to these ranks. It could be represented as:

1 1= 7
SRCC = N(N?—1)

where N represents the total number of test movies and d; represents the difference value between
the subjective and objective scores for the i-th video. SRCC is commonly used in situations where
ordinal data or nonlinear associations are present, making it a versatile tool in statistical analysis.

Kendall Rank-order Correlation Coefficient (KRCC) Kendall Rank-Order Correlation Coefficient
is a non-parametric statistic that measures the ordinal association between two variables. It evaluates
how well the relationship between the variables can be described using a monotonic function. Unlike
SRCC, which ranks the data and then applies Pearson’s correlation to the ranks, Kendall’s coefficient
is based on the number of concordant and discordant pairs of observations. A concordant pair occurs
when the order of the ranks of both variables is consistent, while a discordant pair occurs when the
order is reversed. It could be represented as:

Nc_Nd

KRCC = —°——"
iN(N -1)

where the number of concordant pairs is V., and the number of discordant pairs is Ng. KRCC is
particularly useful for small datasets or when there are many tied ranks, providing a robust method
for assessing ordinal relationships.

Pearson Linear Correlation Coefficient (PLCC) Pearson Linear Correlation Coefficient is a
statistical measure that quantifies the strength and direction of the linear relationship between two
continuous variables. Developed by Karl Pearson, it assumes that the relationship between the
variables is linear and both variables are normally distributed. The coefficient value ranges from -1
to +1, where +1 indicates a perfect positive linear relationship, -1 indicates a perfect negative linear
relationship, and O suggests no linear relationship. It is formulated as:

Y (gi —q) - (0, — 0)

>
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where o; and g; represent the subjective opinion score and the nonlinear-fitted objective score for
the i-th video, 0 and ¢ indicate the mean values of all o; and ¢; scores. It is widely used in various
fields such as science, economics, and social sciences to assess how one variable changes in relation
to another. However, it is sensitive to outliers and should only be used when a linear relationship is
expected.

PLCC =

Root Mean Square Error (RMSE) Root Mean Square Error is a commonly used metric to measure
the difference between predicted and actual values in a dataset. It provides an indication of the
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Table 4: Summary of the mentioned video-human instruction alignment benchmark datasets.

Dataset Year  Instruction Type = Domain #Video  #Video Clips  #Sentence  Duration(hrs)  Resolution Link7
MSVD [30 2011 text multi-category - 1,970 70,028 53 O
UCFI101 |218] 2012 text 101 action classes - 13,320 - 27 320p O
MPII-MD [197 2015 text movie 94 68,337 68,337 73.6 720p O
MSR-VTT [272] 2016 text multi-category 7,180 10,000 200,000 41.2 240p o
Kinetics [93 2017 text 400 action classes - 306,245 - ~ 850 340p/128p O
YouCook?2 [299 2018  text cooking 2,000 14,000 14,000 176 O
TACos-Multi-Level [196] 2014 text cooking 273 14,105 52,593 176 O
HowTol00M [158 2019 text instruction 1.22M 136M 136M 134,472 240p Q
VATEX [251] 2019 text open 41,269 41,269 825,380 ~ 115 O
Webvid-2M [12! 2021 text instruction - 2.5M 2.5M 13K 360p O
InternVid [254] 2023 text open 7.IM 234M 234M 760.3 720p O
Panda-70M [34] 2024 text open 3.8M 70.8M 70.8M 166.8K 720p O
VAST-27M (331 2024 text, audio open 3.3M 27M 297TM 75K 720p o

magnitude of prediction errors by calculating the square root of the average of the squared differences
between predicted and observed values. The formula for RMSE is:

1 N
z : 2

where ¢; represents the observed values, o; the predicted values, and N the number of data points.
RMSE is sensitive to large errors due to the squaring process, making it particularly useful when large
deviations from the expected values are of greater concern. A lower RMSE value indicates better
model performance and a closer fit between predictions and actual outcomes. RMSE is widely used
in regression models and forecasting, helping to evaluate the accuracy and reliability of a model’s
predictions.

Mean Absolute Error (MAE) Mean Absolute Error is a widely used metric in regression analysis
to measure the average magnitude of errors between predicted and actual values without considering
their direction. It is calculated as:

| X
MAE:NZMZ»—OZ-\

where N represents the number of data points. Unlike Root Mean Square Error (RMSE), MAE does
not give extra weight to large errors, as it simply takes the absolute value of the residuals, making
it less sensitive to outliers. This makes MAE a more robust and interpretable measure of overall
prediction accuracy, especially in cases where all errors are treated with equal importance. A lower
MAE value indicates better model performance. It is commonly used in various fields, such as
machine learning, time series analysis, and economics, to assess the accuracy of predictive models.

S Alignment with human Instructions

Generating videos based on specified human instructions has always been an important topic in video
generation. It is also an essential aspect that many current Al-generated video (AIGV) studies strive
to improve. Over the past decade, numerous benchmark datasets and evaluation methods have been
proposed to assess the alignment of generated videos with human instructions (i.e., text, audio). This
section introduces representative benchmark datasets and evaluation methods.

5.1 Benchmark Datasets
In this section, we introduce several representative benchmark datasets widely used before and during

the era of AIGV to assess the alignment between video and human instruction. Specifically, the
general data format of the benchmark datasets can be defined as D = {V, I}, where V represents the
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[MSVD] A man is eating spaghetti out of a
large bowl. / A man tasting some food in
the kitchen is expressing his satisfaction.

[UCF101] Sky Diving

[HowTol00M] two stitches on two
and we'll slip stitch

[HowTol00M] two stitches on two
and we'll slip stitch

[MPII-MD] [AD] Buckbeak rears and
attacks Malfoy. [Script] Ina falsh,
Buckbeak's steely talons slash down.

[MPII-MD] [Script] Malfoy freezes.

[MSR-VTT] A black and white horse
runs around. / A horse is running
around in green lush grass.

[YouCook2] Grill the tomatoes in a
pan and then put them on a plate.

[TACos-Multi-Level] [Detailed] A woman turned on stove. Then she took out a
cucumber from the fridge. She washed the cucumber in the sink. She took out a
cutting board and knife. She took out a plate from the drawer. ... [Short] A woman
took out a cucumber from the refrigerator. Then, she peeled the cucumber. Finally,
she sliced the cucumber on the cutting board. [One sentence] A woman entered the
kitchen and sliced a cucumber.

\\ - ‘

[VATEX] Man on a beach prepare to
assist an incoming parasailor. / 7 I
BRI i b 30 e e e

[VATEX] A person is parasailing above a
body of water and landing on a beach. /
BENT RS — A N LR T

[MPII-MD] [AD] Hagrid lifts Malfoy

up. [Kinetics] Riding A Bike

[YouCook?2] Cook bacon until crispy,
then drain on paper towel.

[YouCook2] Add oil to a pan and
spread it well so as to fry the bacon.

[WebVid2M] Lonely beautiful woman
sitting on the tent looking outside. wind on
the hair and camping on the beach near
the colors of water and shore. freedom
and alternative tiny house for fraveler
lady drinking

[WebVid2M] Billiards, concentrated
young woman playing in a club.

[VAST-27M] A young boy rides a skateboard at a state park, while talking about
skateboarding moves and explaining how to do a trick with your hands and grad your
nose to help get it in there,

[InternVid] [Fine Grain] a person
cooking some food on a stove top

[InternVid] [Fine Grain] a person
cooking some food in a frying pan.

[InternVid] [Coarse Grain] A person cooks various dishes on a stove top and frying pan, prepares the food, sets a table with

[InternVid] [Fine Grain] a person
putting food in a basket

[InternVid] It is a red and purple
betta fish swimming in a tank with
gravel and plants.

lots of food, and puts some of it in a basket.

Figure 9: Exemplar Cases from Alignment with Human Instructions Benchmark Datasets. Here we
intercept one or several frames of the video clip as a representation of the video within each dataset,
along with the different corresponding textual representations.
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video clip and I represents the human instructions, which are typically the textual descriptions (in
addition to VAST-27M [33]], which also contains the audio descriptions). Each benchmark dataset
contains thousands to millions of video clips, along with the corresponding descriptions that are
either manually annotated or generated by multimodal models. Table [ provides an overview of the
key details for each benchmark dataset mentioned, while Figure 0]illustrates an exemplar case from
each dataset.

MSVD [30]: The Microsoft Research Video Description Corpus (MSVD) is one of video description’s
most popular early benchmark construction efforts. During the data collection phase of MSVD,
the Amazon Mechanical Turk workers are asked to find short video segments depicting single
and unambiguous events from YouTube and then mute the video to write at least one sentence to
summarize the single video events. As a result, the outcome MSVD dataset consists of 70,028 English
descriptions collected from 1,970 short video snippets.

UCF101 [218]: UCF101 is a classic and widely used benchmark dataset for evaluating the alignment
between human instructions and video content regarding human actions. UCF101 is a further
refinement of the previous precursor work (i.e., UCF Sports [195], UCF11 [135]], and UCF50 [191])).
It comprises 101 action classes, over 13k clips, and 27 hours of video data. The 101 action classes
in UCF101 can be divided into five types: Human-Object Interaction, Body-Motion Only, Human-
Human Interaction, Playing Musical Instruments, and Sports. The source videos of UCF101 are
downloaded from YouTube and feature challenges like poor lighting, cluttered backgrounds, and
severe camera motion. For one specific action, the corresponding clips are divided into 25 groups.
Each contains 4-7 clips with common features, such as the background and actors. All clips have a
fixed frame rate and resolution of 25 FPS and 320 x 240, respectively.

TACos-Multi-Level [196]: TACos-Multi-Level introduces three levels of detailed text descriptions of
each single video and addresses the limitation that most of the existing benchmarks for automatically
evaluating the video alignment with human instructions focus on a fixed level of detail (i.e., the
ground-truth instructions are mainly described as a single sentence). The data is collected via Amazon
Mechanical Turk based on the TACoS corpus [193]], which contains various cooking videos of 26
different dishes and aligned text descriptions. The human annotators are asked to describe the videos
from the TACos corpus in three ways: 1) a detailed description with at most 15 sentences, 2) a
short description with 3-5 sentences, and 3) a single sentence. TACos-Multi-Level then employs
an intermediate semantic representation (SR) to split each video into video snippets, thereby better
aligning the multi-level video descriptions. As a result, TACos-Multi-Level extends to 273 videos,
with 14,105 video clips and 52,593 multi-grain associated caption sentences. This benchmark also
reveals that as the length of the annotated description decreases, the verbalized information will be
more ‘compressed’ according to the topic of the video.

Kinetics [93]: The Kinetics dataset can be seen as an extension of the previous human actions video
datasets UCF101, as it bridges for UCF101’s lack of data scale and sufficient variation. Similar
to UCF101, the human actions in Kinetics data can be divided into several types: Person Actions
(singular) (i.e., drawing, laughing), Person-Person Actions (i.e., hugging, kissing), Person-Object
Actions (i.e., opening present, mowing lawn). Specifically, Kinetics contains 400 human action
classes. For each action, there are 400-1150 at least 10s lasting video clips, with a total number of
306,245. Unlike the video clips from UCF101, which may be from the same source video and have
a fixed resolution, each video clip from Kinetics is taken from a different YouTube source video
and has variable resolution and frame rate, ensuring the content variation of this benchmark. In
addition, several successor datasets have been constructed based on the original Kinetics dataset,
such as Kinetics-600 [24] and Kinetics-700 [25], which are larger in terms of human action class.

MPII-MD [197]]: MPII-MD (MPII Movie Description) dataset is proposed to evaluate the video’s
alignment with human instructions in terms of the movie domain. Inspired by the utilization of audio
descriptions (ADs) for blind or visually impaired people, MPII-MD collects Blu-ray movies with ADs
and selects a set of 55 films of diverse genres. The audio description for each movie is first segmented
using the Fast Fourier Transform (FFT) and transcribed by a crowd-sourced transcription service.
MPII-MD then splits each movie into video clips according to the time stamps for each spoken
sentence provided by audio segments, thereby constructing the video-caption pairs. In addition to
collecting the video-caption pairs by ADs, MPII-MD also collects several movies by mining the
script web resources, resulting in 94 unique films. These movie data are automatically processed via
[42, [111] to align the script caption and video clip content. Specifically, MPII-MD ends up with 94
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HD movies with a total duration of 73.6 hours, containing 68,337 video clips and the corresponding
sentences. Different from most of the prior video-text alignment benchmark datasets, such as TACoS-
Multi-Level [196], which focus on short video clips and are limited in video duration, this benchmark
provides a novel and much longer data format to evaluate the text description alignment with the
video content.

YouCook?2 [299]: YouCook2 contains 2,000 videos from 89 recipes with a total length of 176 hours.
The recipes are from four major cuisines (i.e., Africa, Americas, Asia, and Europe) and are various
in cooking styles, methods, ingredients, and cookware. The source videos of the YouCook?2 dataset
are from YouTube, which is of various challenges, such as fast camera motion, camera zooms,
and scene-type changes. In specific, each video in YouCook2 contains 3-16 procedure segments.
Compared with its precursor work, YouCook [44]], which does not have the Procedure Annotation
ability, each procedure segment in YouCook2 has time boundary annotations and is described by
English sentences.

MSR-VTT [272]): MSR-VTT (MSR-Video to Text) dataset is proposed to give a more comprehensive
video benchmark for video understanding, especially for translating video to text, instead of focusing
on specific fine-grained domains with simple descriptions. MSR-VTT contains 257 popular queries
corresponding to 20 main categories: music, people, gaming, sports, news, etc. Each query has
a corresponding video list with a length of 118. Specifically, MSR-VTT contains 10k web video
clips with 41.2 hours and 200k clip-sentences pairs, and clip in the dataset is annotated with about
20 natural sentences by 1,327 Amazon Mechanical Turk workers, providing a larger-scale video
description with a more comprehensive topics dataset benchmark in earlier days.

HowTo100M [158]: HowTol00M dataset is a large-scale dataset that consists of 136M video clips
from 1.22M narrated instructional videos depicting humans performing and describing over 23,000
visual tasks, including various activities such as cooking, handcrafting, personal care, gardening,
etc. These activities tasks are first selected from an extensive list of activities using WikiHow, which
contains 120,000 articles on How to... for various domains, then limited the list to "visual tasks"
and filtered by restricting the primary verb to physical actions. Based on these tasks, the original
HowTo100M videos are searched and collected on YouTube. Each source video has corresponding
narration subtitles, either handwritten or from the output of the Automatic Speech Recognition
system. Different from the manually annotated datasets such as MSR-VTT [272], the video clips
from HowTol00M are automatically captioned through narration, which could be thought of as
weakly paired. Specifically, HowTol100M selects each line of video subtitles as one caption and pairs
it with the corresponding time interval segmented video as the video clip. Generally, a source video
can be segmented into 110 clip-caption pairs on average, with an average duration of 4 seconds per
clip and four words per caption. This benchmark proposes an automatic data collection method to
construct instructional video-caption pairs, which is faster and consumes fewer resources.

VATEX [251]: Compared to the previous widely-used large-scale datasets like MSR-VTT [272],
VATEX is a larger, linguistically complex, and more diverse dataset benchmark for both video and
text instruction description. Moreover, VATEX supports multilingual studies, and the video contents
in VATEX are described in both English and Chinese. Specifically, this dataset benchmark covers
600 human activities and contains over 41,250 videos and 825,000 captions in two languages, and it
also has over 206,000 English-Chinese parallel translation pairs. The source of its data collection
is originally from Kinetics-600 [24], VATEX reuses 41,269 video clips from Kinetics-600 [24],
and collects the corresponding bilingual descriptions for each clip via Amazon Mechanical Turk
for English description and Bytedance Crowdsourcing for Chinese. The emergence of this dataset
benchmark further supports the task of multilingual video and text description alignment and the task
of video-guided machine translation.

Webvid-2M [12]: Compared to the prior benchmark datasets in video alignment with text instruction,
WebVid-2M is an order of magnitude large-scale open-domain dataset comprising over 2,500,000
video-text pairs. The average length of the video clips from Webvid-2M is 18 seconds, with a total
time length of 13,000 hours. The data of WebVid-2M is scraped from the web following a similar
method of Google Conceptual Captions (CC3M) [210]. That is, first conduct the video-based filtering
(i.e., keeping the specific video format data) and then the text-based filtering process (i.e., analyze
candidate Alt-text using part-of-speech, sentiment/polarity and pornography/profanity annotations)
to construct the dataset from the extracted candidates. In addition, the styles of text descriptions of
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each video clip in Webvid-2M vary: both longer and poetic descriptions and succinct captions are
present in this benchmark.

InternVid [254]]: InternVid dataset contains over 7,000,000 videos lasting nearly 760K hours,
resulting in 234,000,000 video clips with an average length of 10 seconds. The segmented video
clips have detailed text descriptions of a total of 4.1B words, covering 16 scenarios and 6,104 motion
descriptions collected from American Time Use Survey (ATUS) [22], public video datasets (i.e.,
Kinetics [93]], UCF101 [218]], etc.), and text corpus. Meanwhile, InternVid employs a multi-scale
method with two types of captions. The finer scale descriptions are constructed by the lightweight
image caption model Tag2Text [81], concentrating on the common objects, actions, and scene
descriptions within the video clip. For the coarser scale, InternVid uses BLIP2 [119]] to exclusively
caption the middle frame of the clip. The videos from InternVid vary in language, length, and
resolution. The videos are collected from countries with different languages, including the UK, USA,
China, Japan, Korea, Russia, and France. Among these, 85% are high-resolution (i.e., 720P), with
the rest ranging from 360p to 720p. For video duration, about 49% are under 5 minutes, 26% are
5-10 minutes, and only 8% exceed 20 minutes. Moreover, it also shows diverse clip durations and
caption lengths according to the segmented clip level. That is, most video clips are 0-10 seconds
long, accounting for 85% of the total, with half featuring captions of 10-20 words, one-third having
fewer than ten words, and 11% containing more than 20 words. This large-scale, multilingual, and
multi-level benchmark enhances the development of robust and transferable video-text representations
for advanced multimodal understanding and generation.

Panda-70M [34]]: Panda-70M uses an automatic method to construct a high-quality video-text
instruction open-domain dataset. Specifically, Panda-70M collects 3.8M high-resolution videos from
the HD-VILA-100M dataset [238]], then splits these videos into semantically coherent clips via a
two-stage semantics-aware splitting algorithm. This algorithm first cuts the video based on shot
boundary detection [26] and then uses ImageBind [60] to extract video frames’ embeddings and
merge the adjacent clips if their embeddings are quite similar. Panda-70M also introduces Max
Running LPIPS, counting the maximum perceptual similarity [291]] among the given video clip
to highlight the most significant perceptual change. Driven by the various original video captions
from HD-VILA-100M dataset (i.e., useful texts and images), Panda-70M proposes to use multiple
cross-modality teacher models, including Video-LLaMA [289], VideoChat [121]], VideoChat Text
[121]], BLIP-2 [119], and MiniGPT4 [301]], to obtain captions from each video clip. Based on the
generated candidate captions for each video, Panda-70M further uses a fine-tuned retrieval model
to select the one that best aligns the video content, thereby getting the whole 70M high-quality
video-text caption pairs. This benchmark is designed to provide a large-scale but fine-grained dataset
where the video captions can accurately express the video semantics content without ambiguity.

VAST-27M [33]]: VAST-27M dataset explores the connections between videos and types of human
instructions beyond text, including vision, audio, and subtitles. It selects 27M video clips from
the HD-VILA-100M [238]] dataset based on the clip length and the completeness of modalities
(i.e., vision, audio, and subtitle) and covers over 15 categories, including music, gaming, education,
entertainment, animals, etc. During construction of the VAST-27M dataset, a vision and audio
captioner is trained to generate captions based on the input video clip. Specifically, the vision caption
model is pre-trained on large-scale image-text corpora, including CC4M [271]], CC12M [28]], and
LAION-400M [206]. Then, it is fine-tuned on manually labeled image and video caption datasets
such as MSCOCO [131]], VATEX [251], MSR-VTT [272]], and MSVD [30]]. This two-step training
pipeline gives the vision caption model the capabilities for perceiving static objects and dynamic
actions, thus generating high-quality captions. For the audio caption task, an audio caption model
is trained using large-scale audio-text corpora, including VALOR-1M [32] and WavCaps [155]
datasets. After leveraging vision and audio captioners to generate two types of captions from different
modalities, an off-the-shelf Vicuna-13b model is used as the omni-modality captioner to generate the
omni-modality caption. Vicuna-13b is an open-source large language model (LLM) trained through
fine-tuning of LLaMA [232]. The omni-modality caption generated by Vicuna-13b is designed to
effectively fuse the visual, audio, and subtitle contents while adhering to a natural human caption
style at the same time. The purpose of Vicuna-13b is to fill in the gaps in training and evaluate the
alignment between video and human instructions beyond text. It could further be employed in a wide
range of multi-modal video-related tasks, including retrieval, captioning, and question-answering.
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Figure 10: Compared with the previous multimodal evaluation backbone (top), the emergence of
LLMs helps visual-textual alignment evaluation tasks evolve towards diversity, making the evaluation
process more interpretable (bottom).

5.2 Evaluation Methods

In this section, we introduce several recent representative video-text alignment evaluation models.
Different from the traditional evaluation metrics [8, 243} [14} {127, [179]], which based solely on
assessing the accuracy and fluency of generated video captions, the following studies consider both
visual and textual elements, which could better align with the era of Al video generation. In addition,
knowing that the current mainstream methods for modeling evaluation are frame-based, which
measures the alignment between key video frame images and human instructions. The studies in the
collection are different from those from benchmark evaluations, which directly use videos as visual
representations. These modeling evaluation works use images as visual representations. As shown in
Figure[I0} early modeling evaluation studies primarily relied on multimodal pre-trained models as
their core backbone. However, with recent advancements, there has been a shift towards the use of
large language models (LLMs), which have become increasingly prominent in more recent evaluation
methods.

5.2.1 Multimodal-based Methods

TIGEr [88]]: The Text-to-Image Grounding based metric for image caption Evaluation (TIGEr) aims
to mitigate the negative impact of evaluating only based on the text matching between reference
captions and machine-generated captions in image-text alignment. TIGEr assesses the alignment
between text and image not only relies on the text but also takes image data into account, achieving
a higher consistency with human judgments than the traditional rule-based metrics [8, 243} |14}
1277, 1179]. Specifically, the first stage of TIGEr is fext-image grounding, where TIGEr computes a
grounding scores for each image-text pair via a pre-trained Stacked Cross Attention Neural Network
(SCAN) model [115]. Then, the TIGEr framework goes through its second stage grounding vector
comparison, where it computes the grounding vector s(V, C') between image V' and the generated
caption C, and the grounding vector s(V, R) between image V and the generated caption R. The
higher the similarity between s(V, R) and s(V, C), the higher the quality of C'is. This quality of C' is
measured from two aspects: the first one evaluates the similarity in terms of image regions between
these two vectors based on their grounding scores via Region Rank Similarity (RRS); the second
one assesses the similarity in how attention is distributed across different regions of the image in the
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two vectors, which is also indicated by grounding scores, via Weight Distribution Similarity (WDS).
Then, the final TIGEr score is defined as the average value of the RRS and WDS scores.

VIiLBERTScore [114]: VILBERTScore is another evaluation metric that uses visiolinguistic repre-
sentations rather than solely relying on textual representations that also demonstrate better alignment
with human judgments than the traditional rule-based metrics [8} 243l 14, [127,|179]]. VILBERTScore
first uses the VILBERT model [[144] to compute the contextual embeddings of generated caption &
and reference caption = with the target image I, respectively. Specifically, VILBERTScore extracts
the N region-level features V' = (v, ..., vn) via the pre-trained object detection model [66] for

each target image I, and feeds each pair of image and caption embeddings (X, V) and (X, V) into
pre-trained VILBERT model to extract the text embedding segments H )‘g and H y, from each entire
output embedding. The pairwise cosine similarity between the generated caption and reference
caption embeddings is then computed, and the final VILBERTScore is formulated by the greedy
matching results among the pair of tokens from reference and generated captions to find the most
similar token-match segment based on the similarity score.

COSMic [84]]: COHerence-Sensitive Metric of image captions (COSMic) introduces the first
discourse-aware learned generation metric for evaluating image captions to mitigate the limitations
that the prior existing metrics have struggled to differentiate reasonable generated image captions that
deviate from the reference output in terms of goals or perspective, as the effective image descriptions
may be various and present based on different goals and contexts. COSMic learns to accommodate
diverse discourse goals without penalizing captions for different purposes from a new proposed COIN
dataset, whose image descriptions are labeled with different coherence labels. Specifically, the COIN
dataset contains 4,000 image-caption pairs collected from the Conceptual Captions (CC) training
dataset [[168]. The human annotators then select a coherence label for each pair from Meta, Visible,
Subjective, and Story, and rate the quality of the captions. These collected data, named RaCCoon
(Ratings for Conceptual Caption), is the training dataset for coherence-aware captioning metric (i.e.,
COSMic), and the goal for metric training is to output a score for the generated caption given the
image, reference caption, and the coherence-labels for both two captions. The metric has two different
flavors: 1) a VILBERT-based model pre-trained on large multimodal data and 2) a baseline Vanilla
version. The former uses the pre-trained ViLBERT model [144]], embedding both image and text
inputs to take the vision features into account. Meanwhile, the latter independently embeds the input
image and text using the BERT model and ResNet and later combines the output features for score
computation. This metric introduces the coherence concept in training the image caption evaluation
model, giving novel criteria closer to human judgments and more aligned with image contents.

CLIPScore [71]: CLIPScore is an evaluation metric based on the CLIP model [[186]], which is an
efficient two-tower cross-modal model pre-trained on 400M image-caption pairs. CLIPScore uses the
pre-trained CLIP model to fuse the image and text feature in the same dimension separately without
references, and then compute the cosine similarity between the image visual CLIP embedding c
and the candidate caption textual CLIP embedding v, as the corpus-level alignment score CLIP-S.
In addition, the CLIPscore can further be extended to incorporate references (if available), named
RefCLIPScore. RefCLIPScore first extracts the reference representation 7 through the CLIP model,
and then is computed as a harmonic mean of CLIP-S and the maximal reference cosine similarity.
This assessment method leverages the high-performing cross-modal pre-train models, offering a new
approach to integrating vision and textual features to evaluate their content consistency.

MID [98]: Mutual Information Divergence (MID) also leverages the vision-and-language pre-trained
model (i.e., the CLIP model) and uses the negative Gaussian cross-mutual information as a unified
metric. MID first considers the continuous mutual information for condition x and the generation
y, where the probability and joint probability distributions are multivariate Gaussian defined as
the maximum entropy distribution for the given mean p and covariance Y .. Given this continuous
mutual information, MID derives the point-wise mutual information for pair-wise evaluation (i.e.,
PMI). Then, MID further uses the expectation of PMI for the evaluating sample pair to measure
the divergence from the reference samples, which becomes the final unified metric to measure the
alignment of conditional generation. For the specific text-to-image generation alignment, MID uses
the CLIP’s pre-trained image and text encoders [[186] to encode both visual and textual information.
This method bridges the gap by automatically measuring video-text alignment via mutual information
(MI) based on multimodal models.

36



PickScore [[101]]: PickScore is an evaluation model similar to CLIPScore, and it also leverages the
idea of the reward model objective from InstructGPT [[176] in training. Before training the PickScore,
a new dataset named Pick-a-Pic is built. Specifically, Pick-a-Pic is created by logging user interactions
with the Pick-a-Pic web application for text-to-image generation, containing over 500,000 examples
and 35,000 distinct prompts. Each instance in Pick-a-Pic has a prompt and two generated images,
with a label representing the preferred image to reveal the real users’ preferences. PickScore follows
the architecture of CLIP [186]]: given a text prompt ¢ and an image y, PickScore returns the inner
product s(z, y) of the text embedding E;,;(«) and the image FE,,,4(y) for training objectives. Then,
PickScore is trained following the InstructGPT’s reward model objective that aims to minimize the
natural human preference and the predicted preference distribution, which is computed by N-pair
loss [217] using s(x,y1) and s(x, y2) for one training example. This work introduces a new large
dataset with human preferences over user-prompted model-generated images, leveraging this feature
to further fine-tune the CLIPScore-based evaluation model with the Reinforcement Learning from
Human Feedback (RLHF) method.

ImageReward [270]: ImageReward is a general-purpose text-to-image human preference reward
model that is able to encode human preferences. Specifically, the ImageReward uses BLIP [[119] as
the backbone model, and it is trained based on a systematic pipeline, including dataset collection
and human annotation. The original data is collected via a diverse selection of real user prompts
from DiffusionDB [259]], resulting in 10,000 text prompt candidates (each of them is accompanied
by 4-9 sampled images). Meanwhile, the human annotation process comprises three stages: Prompt
Annotation, Text-Image Rating, and Text-Image Ranking. For each text prompt and its corresponding
images, the annotators are asked to point out the missing part in the images, rating and ranking
each image according to its alignment with the text prompt. As a result, the ImageReward model is
trained on 8,878 valid text prompts and their 136,892 compared pairs via the reward model (RM)
training [219}[176]. For the practical use of the ImageReward (i.e., as the metric for evaluating human
preference on text-to-image models), the researcher annotation (i.e., by authors) is conducted across
six popular high-resolution and available text-to-image models: CogView 2 [47]], Versatile Diffusion
[274], Stable Diffusion (both 1.4 and 2.1-base [198]]), DALL-E 2 [189], and Openjourney [182]. This
work extends the RLHF method in multimodal evaluation model tuning to a general and more direct
optimization way.

TITScore [85]: TITScore solves the long-tailed effect in the existing text-to-image evaluation metrics,
such as CLIPScore [72]. This issue arises from the non-essential elements in the text prompts, leading
to a distinct difference between the knowledge representation and the embedding dimensionality when
encoding the entire text prompt. To solve this problem, TITScore uses a symbolic-level understanding
evaluation paradigm by explicitly embedding mixture-of-experts (MOEs) large vision models (LVMs)
while maintaining the neuro-level reasoning capability. Specifically, TITScore integrates three
primary components: prompt curation, MOE, and knowledge gathering. In the prompt curation
process, a classifier model (i.e., a pre-trained Robustly Optimized BERT model [[140]) yields a set
of related evaluation aspects based on the given input prompt. The original prompt embedding F,
will be integrated with the embeddings of the decomposed tokens for each identified aspect Ep to
maximize the conditional probability p(Ep|E,), thereby enhancing the final prompt curation output.
Then, in the MOE process, the evaluation aspects will be divided into two paradigms (i.e., the explicit
symbolic level and the implicit neuro-level). TITScore uses a variety of visual reasoning models
(e.g., segmentation model [100] and detection model [[L75])) for the explicit symbolic level evaluation
and adapts multimodal models (e.g., fine-tuning an adapter after the ViTLarge model [50]) for the
implicit neuro-level assessment. The final TITScore is computed by comparing the MOE evaluation
embeddings with the curated prompt embeddings. In addition, a new benchmark dataset T1TBench
is proposed to facilitate the semantically rich text-to-visual evaluation studies, which contains over
2,400 diverse prompts across 16 evaluation aspects, including alignment, category, etc.

5.2.2 LLM-based Methods

GPT-4V Eval [293]: GPT-4V Eval explores the potential of GPT-4V [1]], a high-performance multi-
modal transformer language model, in evaluating the vision-language tasks. GPT-4V Eval introduces
two evaluation pipelines, single-answer grading and pairwise comparison, to systematically validate
the capabilities of GPT-4V as an evaluator and how well it aligns with human performance in
vision-language tasks, including image-to-text captioning, text-to-image generation, text-guided
image editing, and multiple images to text alignment tasks. Specifically, for single-answer grading,
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GPT-4V is asked to generate a score on a scale of 1-100 to evaluate the quality and alignment of the
input-output pair. Meanwhile, in pairwise comparison, GPT-4V is asked to generate an answer to
determine the best choice (select one or response “Tie’) of a pair of generated outputs. This work
validates the effectiveness of LLMs (especially the GPT-4) as the evaluator, relying on its content
comprehension and reasoning capabilities to directly score the alignment of text-image pairs.

LLMScore [148]: LLMScore leverages the powerful reasoning capabilities of large language models
(LLMs) to assess the alignment between the images and captions. Inspired by the human evaluation
process of measuring image-text alignment, LLMScore aims to imitate human decisions’ key points,
such as checking the correctness of objects and the specific attributes in the generated image based
on the given text prompt. Specifically, LLMScore first uses image captioning model BLIPv2 [119]
and GRiT [268] as the Multi-Granularity Visual Descriptors, transforming the image into multi-
granularity descriptions (i.e., image-level global and object-level local) to capture the compositional
objects in text format. Then, the above descriptions and the text prompts will be fed into LLMs,
such as GPT-4 [174], to serve as a Text-to-Image Evaluator for reasoning the consistency between
the text prompts and images. Given the visual descriptions above, LLM first rates the quality based
on the specific instructions regarding overall semantics, error counting, etc. LLMScore combines
all the rating results from different aspects and finally derives the final evaluation score. This work
leverages the LLMs as text-image alignment evaluators as well. Meanwhile, it focuses more on the
multi-granularity of the image compositionality when rating.

VIEScore [107]: VIEScore also leverages the multimodal large language models (MLLMs) as the
backbone evaluators but focuses more on the reasoning explainability and task awareness of the
evaluation framework. Specifically, VIEScore proposes a rating instruction based on the design of
human evaluation scores from ImagenHub, [110], considering both the semantic consistency (SC) and
perceptual quality (PQ), and the SC contains multiple types of scores according to the specific tasks.
These rating instructions, along with the text and image (based on the specific tasks), will be fed into
the MLLM together, and then the generated responses will be parsed and yield the sub-scores for SC
and PQ access, respectively. VIEScore assumes each sub-score weights the same, deriving the root of
the product of the SC score and PQ score as the final evaluation score. VIEScore employs various
MLLMs, including GPT-4o0 [3)], GPT-4v [[1], Gemini-Pro [194]], LLaVA [133]], as the evaluation
backbone and conducts empirical experiments on ImagenHub human evaluation dataset [[110]].

TIFA [79]: Text-to-Image Faithfulness evaluation with question Answering (TIFA) measures the
faithfulness of a generated image to its text prompt based on the questioning generation and answering
process (QG/A). Specifically, TIFA generates several binary question-answering pairs based on the
given text prompt via LLMs. Then, the generated image’s faithfulness and alignment are calculated
by checking whether the VQA system can answer the corresponding question. The final TIFA metric
score is defined as the mean value of the number of correct answers provided by the VQA models. In
practice, TIFA uses GPT-3 as the element extraction and question generation model, then the generated
questions are verified via UnifiedQA [97], filtering out the ones that UnifiedQA can not agree with.
In addition, TIFA uses open-domain pre-trained vision-language models [[116} 247, 99, [248]] as the
VQA models to answer the generated questions, as they contain various visual elements (e.g., activity,
art style). Based on TIFA, a new benchmark dataset, TIFA v1.0 is also proposed, which contains 4k
diverse text descriptions and 25K questions across 12 categories.

VQ2 [279]: VQ2 is an image-text alignment evaluation approach that is also based on question
generation and answering (QG/A). Unlike TIFA, which compares the contents of the text-image pair,
VQ2 checks if the textual answer is accurate based on the image in the QA process. For example,
given an image-text pair (i.e., {I,T}), VQ2 first extracts a set of candidate answers for the given
text T" via SpaCy [[77]], then uses a QG model (i.e., a T5-XXL model [187] fine-tuned on SQuAD1.0
[L88]) to generate a question based on each candidate answer. Each generated question-answer
pair (g;, a;) will be re-written into a new yes-no format ¢; (i.e., "is {a;} true for {g;}"). The VQA
(i.e., PaLI-17B model [35]) model then gives an answer to q;-. VQ2 defines the alignment score
sj = VQA(gj,q;,I) as the probability of the model for answering "yes’, and the final VQ2 score is
denoted as the average value over all s; scores for all the generated question-answer pairs. In addition
to VQ2, a new evaluation dataset SeeTrue is also proposed to facilitate the studies in text-to-image
generation evaluation studies, which encompasses 31,855 real and synthetic images and text examples
with human judgments for whether a given image-text pair is semantically aligned.
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DSG [38]]: Davidsonian Scene Graph (DSG) is an empirically grounded evaluator that is also based
on the question generation and answering (QG/A) framework. DSG follows the QG/A methodology
like TIFA [79], and VQ?2 [279] but applies the idea from formal semantics [45]] to address several
reliability issues (i.e., duplicated and non-atomic question). Specifically, in text-to-image alignment
evaluation, DSG first goes through the question generation (QG) process, generating atomic and
unique questions (i.e., each question covers the smallest possible semantic unit) from the text prompts.
These generated questions should cover all contents and only the contents of the given text prompt,
and each question’s content should be unique. DSG then conducts the question-answering (QA)
process, answering the generated questions based on the corresponding image via the VQA models. In
practice, DSG implements the QG step using a Directed Acyclic Graph (DAG), where each node here
represents an atomic question, and each directed edge represents the semantic dependencies between
the questions. DSG leverages the high-performance LLMs, including PaLM2 [9] and GPT3.5/4 [5],
for the QG stage. In the QA stage, the questions are processed by the VQA modules 11635 43]
according to the given DAG. To further facilitate the studies in text-to-image alignment evaluation, a
fine-grained human-annotated benchmark dataset DSG-1k is also proposed to conduct the empirical
experiments; DSG-1k is based on the dataset TIFA v1.0 but contains a more well-balanced mix of
semantic categories and styles.

VPEVAL [39]: VPEVAL is an evaluation framework for text-to-image generation based on inter-
pretable visual programming. Specifically, VPEVAL generates evaluation programs with LLMs via
in-context learning, and the evaluation programs can be 1) skill-based evaluation and 2) open-ended
evaluation. In skill-based evaluation, VPEVAL defines five image generation skills (i.e., object, count,
spatial, scale, and text rendering) and creates a set of skill-specific text prompts. Given these prompts,
the evaluation programs measure the text-image alignment scores (in binary form) by calling the
related visual modules. In open-ended evaluation, VPEVAL uses a diverse of skill prompts and
leverages LLMs (i.e., ChatGPT [171]) to generate the corresponding evaluation program for each
skill prompt dynamically, and then adapts a set of specific visual evaluation modules for different
tasks for each evaluation program measurement. For example, the object detection models Grounding
DINO [136] and DPT [190] are used as the modules for object skill measurement, and the BLIP-2
[L19] is used as the visual question answering module. This work provides a new perspective in
textual and visual alignment evaluation, leveraging programming to invoke diverse visual modules to
evaluate diverse image generation skills.

6 Future Prospects

As we stand on the point of significant advancements in AIGVE, we are facing numerous opportunities
and unidentified challenges. This section outlines several key future prospects that aim to assist the
development of this emerging field.

Integrating Vision Language Models: As Vision Language Models (VLMs) such as Qwen [[11]],
LLaVA [132], and Chameleon [227] become increasingly sophisticated, their support for video
inputs marks a significant advancement. These models leverage transformer [242] architectures,
which enable them to process complex interactions within video frames and between accompanying
textual data efficiently. This capability allows VLMs to interpret dynamic visual content while
correlating it with relevant text, enhancing their ability to evaluate alignment with human perception
and instructions accurately.

Moreover, the ability of VLMs to process text inputs opens opportunities for creating on-demand
video evaluation models. These models could be tailored to assess general qualities or focus on
specific attributes based on the user’s prompts. This capability enhances the versatility and utility of
VLMs in diverse applications, from research to professional media production.

Improving Score Interpretability: As the evaluation methods for video quality transition from
utilizing collections of scores to deploying single models that generate a unified score, the inherent
"black box" nature of neural networks presents both challenges and opportunities [62]. Researchers
must carefully navigate the trade-offs between model integration and score interpretability [58}249].
Some recent research starts the early exploration of this field [79, 147,156, [108]. This transparency
not only aids in debugging and refining the models but also ensures that the outcomes are transparent,
justifiable, and reproducible in diverse applications, especially as they potentially could become
widely applied on platforms that determine creators’ rights and revenues. Enhancing the clarity
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of how scores are derived can help maintain trust and fairness, ensuring that these models support
creators fairly and consistently across various platforms.

Ethical and Safety Considerations: As Al-generated content becomes increasingly commonplace,
the importance of embedding ethical standards and safety mechanisms within AIGVE frameworks
cannot be overstated. These frameworks must be designed to actively prevent the propagation of
biases or misinformation, which can have significant societal impacts. This involves implementing
robust algorithms that can detect and mitigate biased data inputs or skewed results that may perpetuate
stereotypes or unequal representations.

Moreover, the training data for these models often come from human-scored inputs, which inherently
contain subjective biases based on the scorers’ backgrounds and experiences [221} [161]]. To enhance
the fairness and inclusivity of Al evaluations, it is crucial to diversify the sources of human-scored
data and implement strategies that can identify and correct biases in the training datasets. This might
include using techniques such as stratified sampling to ensure that training data covers a wide range
of demographics and viewpoints [52, 90], as well as employing fairness-aware machine learning
algorithms [304]] that can adjust for identified biases. Additionally, careful collection and curation of
training data are essential. By deliberately selecting data that represent diverse user interactions and
contexts, developers can further minimize the risk of biased outcomes.

In addition to bias mitigation, ethical AIGVE frameworks should incorporate privacy protections,
especially when handling sensitive or personal content. Ensuring data anonymization and securing
user data against unauthorized access are vital steps in maintaining user trust and complying with
global privacy regulations.

7 Conclusion

This survey highlights the importance of Al-Generated Video Evaluation (AIGVE) as a distinct
research area, focusing on aligning Al-generated videos with human perception and instructions. By
reviewing existing methodologies from video quality assessment, multimodal text-visual alignment,
and recent comprehensive evaluation approaches, we provide a structured overview of the current
landscape. As Al-generated video technology continues to advance, there is a critical need for
developing more robust evaluation frameworks that effectively capture the complexity of both spatial
and temporal dimensions in video content while ensuring alignment with human needs. We hope this
survey serves as a foundational resource for researchers, supporting the advancement of this evolving
field.
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